Coursera
オンライン学位キャリアを探す企業用大学
  • 閲覧
  • 一番人気のコース
  • ログイン
  • 参加は無料
    Coursera
    • 閲覧
    • Algorithmic Trading
    Related topics:取引デイトレードファイナンシャル・トレーディングPythonファイナンス株式取引カルマンフィルター

    フィルター

    「algorithmic trading」の32件の結果

    • EDHEC Business School

      EDHEC Business School

      Investment Management with Python and Machine Learning

      習得できるスキル: Accounting, Business Analysis, Communication, Computer Programming, Data Analysis, Data Mining, Finance, Financial Analysis, General Statistics, Investment Management, Machine Learning, Machine Learning Algorithms, Marketing, Markov Model, Mathematics, Natural Language Processing, Probability & Statistics, Probability Distribution, Programming Principles, Python Programming, Risk Management, Statistical Programming, Supply Chain and Logistics, Theoretical Computer Science

      4.6

      (1.5k件のレビュー)

      Beginner · Specialization

    • Google Cloud

      Google Cloud

      Machine Learning for Trading

      習得できるスキル: Accounting, Artificial Neural Networks, Business Analysis, Cloud Computing, Computer Programming, Data Analysis, Finance, Financial Analysis, General Statistics, Investment Management, Machine Learning, Mathematics, Probability & Statistics, Python Programming, Reinforcement Learning, Statistical Programming, Trading

      3.9

      (936件のレビュー)

      Intermediate · Specialization

    • Indian School of Business

      Indian School of Business

      Trading Strategies in Emerging Markets

      習得できるスキル: Accounting, Algorithms, Android Development, Audit, Business Analysis, Change Management, Communication, Data Analysis, Entrepreneurship, Finance, Financial Analysis, Investment Management, Leadership and Management, Market Analysis, Market Research, Marketing, Mobile Development, Planning, Probability & Statistics, Research and Design, Risk Management, Securities Trading, Software Engineering, Software Testing, Strategy, Strategy and Operations, Theoretical Computer Science, Trading

      4.2

      (2.4k件のレビュー)

      Beginner · Specialization

    • 無料

      The Hong Kong University of Science and Technology

      The Hong Kong University of Science and Technology

      Python and Statistics for Financial Analysis

      習得できるスキル: Python Programming, Probability Distribution, Analysis, Data Analysis, General Statistics, Finance, Business Analysis, Accounting, Statistical Programming, Computer Programming, Probability & Statistics

      4.4

      (3.2k件のレビュー)

      Intermediate · Course

    • New York University

      New York University

      Reinforcement Learning in Finance

      習得できるスキル: Machine Learning

      3.6

      (118件のレビュー)

      Advanced · Course

    • New York University

      New York University

      Guided Tour of Machine Learning in Finance

      習得できるスキル: Tensorflow, Statistical Programming, Finance, Computer Programming, Machine Learning, Reinforcement Learning, Probability & Statistics, Theoretical Computer Science

      3.8

      (625件のレビュー)

      Intermediate · Course

    • Placeholder
      Coursera Project Network

      Coursera Project Network

      Tesla Stock Price Prediction using Facebook Prophet

      習得できるスキル: Plot (Graphics), General Statistics, Analysis, Data Analysis, Computer Programming, Probability & Statistics, Data Visualization

      4.4

      (43件のレビュー)

      Beginner · Guided Project

    • Placeholder
      Columbia University

      Columbia University

      Financial Engineering and Risk Management

      習得できるスキル: Accounting, Algebra, Analysis, Applied Mathematics, Audit, BlockChain, Calculus, Euler'S Totient Function, FinTech, Finance, Investment Management, Leadership and Management, Linear Algebra, Machine Learning, Markov Model, Mathematical Optimization, Mathematical Theory & Analysis, Mathematics, Modeling, Probability & Statistics, Risk Management

      4.4

      (63件のレビュー)

      Intermediate · Specialization

    • Placeholder
      Google Cloud

      Google Cloud

      Introduction to Trading, Machine Learning & GCP

      習得できるスキル: Finance, Cloud Computing, Investment Management, Probability & Statistics, Machine Learning, Trading

      4.0

      (716件のレビュー)

      Intermediate · Course

    • Placeholder

      無料

      Princeton University

      Princeton University

      Algorithms, Part I

      習得できるスキル: Sorting, Data Management, Algorithms, Computer Programming, Data Structures, Theoretical Computer Science

      4.9

      (9.6k件のレビュー)

      Intermediate · Course

    • Placeholder
      Indian School of Business

      Indian School of Business

      Trading Algorithms

      習得できるスキル: Financial Analysis, Business Analysis, Finance, Marketing, Accounting, Data Analysis, Market Analysis, Trading, Investment Management

      4.6

      (1k件のレビュー)

      Intermediate · Course

    • Placeholder
      University of Illinois at Urbana-Champaign

      University of Illinois at Urbana-Champaign

      Applying Data Analytics in Finance

      習得できるスキル: Statistical Programming, Finance, General Statistics, Computer Programming, Data Analysis, Regression, Analysis, Accounting, Forecasting, R Programming, Business Analysis, Other Programming Languages, Financial Analysis, Probability & Statistics

      4.5

      (188件のレビュー)

      Intermediate · Course

    algorithmic tradingに関連する検索

    trading algorithms
    advanced trading algorithms
    123

    要約して、algorithmic trading の人気コース10選をご紹介します。

    • Investment Management with Python and Machine Learning: EDHEC Business School
    • Machine Learning for Trading: Google Cloud
    • Trading Strategies in Emerging Markets: Indian School of Business
    • Python and Statistics for Financial Analysis: The Hong Kong University of Science and Technology
    • Reinforcement Learning in Finance: New York University
    • Guided Tour of Machine Learning in Finance: New York University
    • Tesla Stock Price Prediction using Facebook Prophet: Coursera Project Network
    • Financial Engineering and Risk Management: Columbia University
    • Introduction to Trading, Machine Learning & GCP: Google Cloud
    • Algorithms, Part I: Princeton University

    Design And Productで学べるスキル

    ユーザーインターフェイス (18)
    ユーザーエクスペリエンス (16)
    ソフトウェアテスト (13)
    ゲームデザイン (11)
    アジャイルソフトウェア開発 (10)
    グラフィックス (10)
    バーチャルリアリティ(仮想現実) (9)
    デザイン思考 (8)
    Web (8)
    テレビゲーム開発 (7)
    Webデザイン (7)
    Adobe Photoshop (6)

    Algorithmic Tradingに関するよくある質問

    • Algorithmic trading, also known as automated trading or “algo trading,” is the use of computers and high-speed internet connections to execute large volumes of trading in financial markets much faster than would be possible for human traders. “Algos” leverage machine learning algorithms, typically created using reinforcement learning techniques in Python, to build high-frequency trading strategies that can make orders based on electronically-received information on variables like time, share price, and volume.

      Understanding algorithmic trading is critically important to understanding financial markets today. It is estimated that algorithms are responsible for 80% of trading on U.S. stock markets, and it is widely used by investment banks, hedge funds, and other institutional investors. There are debates over the impacts of this rapid change in the market; some argue that it has benefitted traders by increasing liquidity, while others fear the speed of trading has created more volatility.

      However, there is no question that algo trading is here to stay, and day traders as well as finance professionals need to understand how they work at a minimum - and, ideally, be able to make use of these powerful tools themselves.‎

    • Because of their ubiquity in today’s financial markets, a baseline familiarity with algorithmic trading is increasingly essential for careers as a trader, analyst, portfolio manager, or other finance jobs. These highly-paid professionals may work at institutions such as banks, asset management firms, and hedge funds, and they are increasingly adding courses in algorithms, machine learning, and other related areas to their education in order to understand this critical topic.

      Career opportunities in this field are also attracting professionals with high-level computer science skills, who have gained nearly as high of a profile in the finance industry as algorithmic trading itself. Quantitative analysts, or “quants,” are highly prized for their ability to apply their programming skills to massive datasets, statistics, and other high-velocity market inputs to create the mathematical models required for algorithmic trading and other financial engineering techniques.

      In a sense, then, algorithmic trading is where finance and programming meet, giving professionals with the ability to span these worlds the opportunity to create enormous value for their firms.‎

    • Absolutely. Coursera offers a wealth of courses and Specializations about relevant topics in both finance and computer science, including opportunities to learn specifically about algorithmic trading. These courses are offered by top-ranked schools from around the world such as New York University and the Indian School of Business, as well as leading companies like Google Cloud.

      In addition to being able to access a high-quality education remotely from anywhere in the world, learning online through Coursera offers other advantages. The ability to virtually attend lectures and complete coursework on a flexible schedule makes online courses ideal for working professionals in finance or computer programming that want to add algorithmic trading to their skillset. And the lower cost of online courses compared to on-campus alternatives means that this high-value education can be surprisingly affordable.‎

    • The skills and experience that you might need to already have before starting to learn algorithmic trading are generally financial in nature, covering areas like programming skills, knowledge of trading and financial markets, and a solid understanding of financial modeling and quantitative analysis. These are deep subjects that would involve having a fundamental basis of mathematics concepts, data science, and programming capabilities. You might also learn more about algorithmic trading in other ways, from studying online webinars, taking online courses, reading informative blogs, or watching video content. Conversely, you might also attend college to gain a degree in mathematics, computer science, or statistical analysis. Having a good education would be a good benefit before starting to learn algorithmic trading.‎

    • The kind of people that are best suited for work that involves algorithmic trading are people who are comfortable working with numbers, data, computer algorithms, and financial concepts. People working in algorithmic trading are known as ‘quants’, short for quantitative analysts, or financial quantitative analysts. A person who works as a quant uses knowledge, skills, and experience to help financial organizations generate profits while reducing risk. These quants must be able to analyze data, develop statistical scenarios, and implement complex mathematical models for banks, hedge funds, and investment firms to make smart decisions about pricing structures, investments, and risk management opportunities.‎

    • You might know if learning algorithmic trading is right for you if you have a sharp mind that can scan and analyze numbers in math, data, and financial areas quickly and decisively. You would most likely love aspects of technology and finance, working with programming languages, scrutinizing data, crunching numbers, and having a good grasp of principles with ratios and percentages. If you want to learn if algorithmic trading is right for you, then you might want to take online courses in statistical modeling, quantitative analyses, financial trading, computer programming and related areas to gauge your interest and capability for this subject.‎

    このFAQの内容は、情報提供のみを目的としています。受講生は、自分の個人的、職業的、経済的な目標に合ったコースやその他の資格を取得するために、さらに調べることをお勧めします。
    探索する他のトピック
    Placeholder
    芸術と人文
    338コース
    Placeholder
    ビジネス
    1095コース
    Placeholder
    コンピューターサイエンス
    668コース
    Placeholder
    データサイエンス
    425コース
    Placeholder
    情報技術
    145コース
    Placeholder
    健康
    471コース
    Placeholder
    数学と論理
    70コース
    Placeholder
    自己啓発
    137コース
    Placeholder
    物理科学とエンジニアリング
    413コース
    Placeholder
    社会科学
    401コース
    Placeholder
    言語学習
    150コース

    Coursera Footer

    キャリアをスタート、またはキャリアアップする

    • Google データアナリスト
    • Googleプロジェクトマネジメント
    • グーグルUXデザイン
    • Google ITサポート
    • IBMデータサイエンス
    • IBMデータアナリスト
    • ExcelとRを使用したIBMデータ分析
    • IBMサイバーセキュリティ・アナリスト
    • IBMデータエンジニアリング
    • IBMフルスタック・クラウドデベロッパー
    • Facebookソーシャルメディアマーケティング
    • Facebookマーケティング分析
    • Salesforce営業開発担当者
    • Salesforce Sales Operations
    • インテュイット簿記
    • Google Cloud 認定資格の取得準備:クラウドアーキテクト
    • Google Cloud 認定資格の取得準備:クラウドデータエンジニア
    • キャリアをスタートさせましょう
    • 証明書の取得準備
    • キャリアアップ

    人気のあるトピックを閲覧

    • 無料コース
    • 言語を学ぶ
    • Python
    • Java
    • Webデザイン
    • SQL
    • Cursos Gratis
    • Microsoft Excel
    • プロジェクトマネジメント
    • サイバーセキュリティ
    • 人事
    • データサイエンスの無料コース
    • 英語のスピーキング
    • コンテンツのライティング
    • フルスタックWeb開発
    • 人工知能
    • Cプログラミング
    • コミュニケーションスキル
    • ブロックチェーン
    • すべてのコースを見る

    人気のコースと記事

    • データサイエンスチームのためのスキル
    • データ駆動型意思決定
    • ソフトウェアエンジニアリングのスキル
    • エンジニアリングチームのためのソフトスキル
    • マネジメントスキル
    • マーケティングのスキル
    • セールスチームのためのスキル
    • プロダクトマネージャのスキル
    • ファイナンススキル
    • イギリスで人気のデータサイエンスコース
    • Beliebte Technologiekurse in Deutschland
    • 人気のサイバーセキュリティ証明書
    • 人気の IT 証明書
    • 人気の QL 証明書
    • マーケティングマネージャーキャリアガイド
    • プロジェクトマネージャーキャリアガイド
    • Pythonプログラミングスキル
    • Web開発者キャリアガイド
    • データアナリストのスキル
    • UXデザイナーのためのスキル

    オンラインで学位または証明書を取得する

    • MasterTrack®認定
    • プロフェッショナル認定
    • 大学証明書
    • MBAとビジネス学位
    • データサイエンスの学位
    • コンピュータサイエンスの学位
    • データ分析の学位
    • 公衆衛生学位
    • 社会科学の学位
    • 経営学の学位
    • ヨーロッパのトップレベルの大学の学位
    • 修士号
    • 学士号
    • パフォーマンスパスウェイの学位
    • BSc コース
    • 学士号とは何ですか?
    • 修士号の取得にはどれくらい時間がかかりますか?
    • オンラインMBAに価値がありますか?
    • 大学院で学ぶための7つの方法
    • すべての証明書を表示する

    Coursera

    • 概要
    • Courseraのサービス
    • リーダーシップ
    • キャリア
    • カタログ
    • Coursera Plus
    • プロフェッショナル認定
    • MasterTrack®認定
    • 学位
    • 企業用
    • 政府向け
    • キャンパス向け
    • パートナーになる
    • 新型コロナウイルス対策

    コミュニティ

    • 受講生
    • パートナー
    • 開発者
    • ベータテスター
    • 翻訳者
    • ブログ
    • 技術ブログ
    • 教育センター

    さらに表示

    • 報道関係者
    • 投資家
    • 規約
    • プライバシー
    • ヘルプ
    • アクセシビリティ
    • お問い合わせ
    • 記事
    • ディレクトリ
    • アフィリエイト
    • Modern Slavery Statement(現代奴隷法に関する表明)
    場所を選ばす学習する
    App StoreからダウンロードGoogle Playで取得
    Placeholder
    ©2022 Coursera Inc.All rights reserved.
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder