Coursera
オンライン学位キャリアを探す企業用大学
  • 閲覧
  • 一番人気のコース
  • ログイン
  • 参加は無料
    Coursera
    • 閲覧
    • Neural Networks
    Related topics:ディープラーニングdeeplearning.ai音声認識応用統計学ニューラルネットワーク確率

    フィルター

    「neural networks」の335件の結果

    • IBM

      IBM

      AI Foundations for Everyone

      習得できるスキル: Applied Machine Learning, Cloud Computing, Computer Vision, Deep Learning, Ethics, IBM Cloud, Machine Learning, Machine Learning Algorithms, Natural Language Processing, Software Engineering, Software Engineering Tools, Web Development, Web Development Tools

      4.7

      (11.3k件のレビュー)

      Beginner · Specialization

    • DeepLearning.AI

      DeepLearning.AI

      Generative Adversarial Networks (GANs)

      習得できるスキル: Applied Machine Learning, Artificial Neural Networks, Computer Programming, Computer Vision, Deep Learning, Machine Learning, Machine Learning Algorithms, Modeling, Python Programming, Statistical Programming

      4.7

      (1.8k件のレビュー)

      Intermediate · Specialization

    • DeepLearning.AI

      DeepLearning.AI

      TensorFlow: Advanced Techniques

      習得できるスキル: Applied Machine Learning, Artificial Neural Networks, Computer Architecture, Computer Graphic Techniques, Computer Graphics, Computer Networking, Computer Programming, Computer Vision, Deep Learning, Distributed Computing Architecture, Euler'S Totient Function, Machine Learning, Machine Learning Algorithms, Mathematics, Modeling, Network Architecture, Programming Principles, Python Programming, Statistical Programming

      4.8

      (1k件のレビュー)

      Intermediate · Specialization

    • DeepLearning.AI

      DeepLearning.AI

      Practical Data Science on the AWS Cloud

      習得できるスキル: Deep Learning, Machine Learning, Natural Language Processing

      4.6

      (329件のレビュー)

      Advanced · Specialization

    • Google Cloud

      Google Cloud

      Machine Learning on Google Cloud

      習得できるスキル: Algorithms, Apache, Applied Machine Learning, Bayesian Statistics, Business Analysis, Business Psychology, Cloud Computing, Computational Thinking, Computer Architecture, Computer Programming, Data Analysis, Data Management, Deep Learning, Entrepreneurship, Exploratory Data Analysis, Feature Engineering, General Statistics, Google Cloud Platform, Hardware Design, Machine Learning, Probability & Statistics, Python Programming, Regression, Statistical Programming, Theoretical Computer Science

      4.5

      (9.2k件のレビュー)

      Intermediate · Specialization

    • University of Toronto

      University of Toronto

      Self-Driving Cars

      習得できるスキル: Artificial Neural Networks, Communication, Computer Graphic Techniques, Computer Graphics, Computer Programming, Computer Vision, Decision Making, Deep Learning, Entrepreneurship, Estimation, Feature Engineering, General Statistics, Graph Theory, Leadership and Management, Linear Algebra, Machine Learning, Mathematical Theory & Analysis, Mathematics, Modeling, Planning, Probability & Statistics, Probability Distribution, Python Programming, Statistical Programming, Supply Chain and Logistics

      4.7

      (3k件のレビュー)

      Advanced · Specialization

    • Placeholder
      Duke University

      Duke University

      AI Product Management

      習得できるスキル: Algorithms, Artificial Neural Networks, Business Psychology, Computer Networking, Computer Vision, Data Management, Data Structures, Database Administration, Databases, Deep Learning, Design and Product, Econometrics, Entrepreneurship, General Statistics, Human Computer Interaction, Leadership and Management, Machine Learning, Machine Learning Algorithms, Natural Language Processing, Network Security, Operating Systems, Probability & Statistics, Product Management, Project, Regression, Research and Design, Security Engineering, Strategy and Operations, Systems Design, Theoretical Computer Science, User Experience, User Experience Design

      4.6

      (81件のレビュー)

      Beginner · Specialization

    • Placeholder
      DeepLearning.AI

      DeepLearning.AI

      AI for Medicine

      習得できるスキル: Algorithms, Analysis, Applied Machine Learning, Computer Graphics, Deep Learning, Euler'S Totient Function, Feature Engineering, General Statistics, Machine Learning, Machine Learning Algorithms, Modeling, Natural Language Processing, Probability & Statistics, Random Forest, Randomness, Theoretical Computer Science

      4.7

      (2k件のレビュー)

      Intermediate · Specialization

    • Placeholder
      DeepLearning.AI

      DeepLearning.AI

      Introduction to TensorFlow for Artificial Intelligence, Machine Learning, and Deep Learning

      習得できるスキル: Convolutional Neural Network, Deep Learning, Python Programming, Machine Learning, Computer Graphics, Applied Machine Learning, Computer Vision, Computer Programming, Artificial Neural Networks, Statistical Programming, Programming Principles, Keras, Computer Graphic Techniques, Tensorflow

      4.7

      (17.3k件のレビュー)

      Intermediate · Course

    • Placeholder
      Johns Hopkins University

      Johns Hopkins University

      Neuroscience and Neuroimaging

      習得できるスキル: Account Management, Accounting, Accounting Software, Adaptability, Advertising Sales, Algebra, Amazon Web Services, Analysis, Artificial Neural Networks, Bioinformatics, Business Analysis, Business Psychology, Cloud Computing, Cloud Storage, Communication, Computer Graphic Techniques, Computer Graphics, Computer Programming, Computer Programming Tools, Computer Vision, Correlation And Dependence, Data Analysis, Data Mining, Data Visualization, Entrepreneurship, Experiment, General Statistics, Machine Learning, Machine Learning Algorithms, Marketing, Mathematics, Modeling, Operating Systems, Probability & Statistics, R Programming, Regression, Sales, Statistical Analysis, Statistical Programming, Statistical Tests, Statistical Visualization, Systems Design, Theoretical Computer Science

      4.6

      (2.8k件のレビュー)

      Intermediate · Specialization

    • Placeholder
      University of Michigan

      University of Michigan

      Financial Technology (Fintech) Innovations

      習得できるスキル: Accounting, Big Data, BlockChain, Business Analysis, Corporate Accouting, Cryptocurrency, Data Analysis, Data Management, Deep Learning, FinTech, Finance, Financial Analysis, Investment Management, Leadership and Management, Machine Learning, Payments, Probability & Statistics, Regression

      4.7

      (2k件のレビュー)

      Beginner · Specialization

    • Placeholder
      DeepLearning.AI

      DeepLearning.AI

      Structuring Machine Learning Projects

      習得できるスキル: Entrepreneurship, Deep Learning, Applied Machine Learning, Marketing, Leadership and Management, Strategy, Analysis, Sales, Strategy and Operations, Project, Business Psychology, Project Management, Machine Learning

      4.8

      (48.2k件のレビュー)

      Beginner · Course

    neural networksに関連する検索

    neural networks and deep learning
    neural networks and random forests
    convolutional neural networks
    deep neural networks with pytorch
    convolutional neural networks in tensorflow
    improving deep neural networks: hyperparameter tuning, regularization and optimization
    introduction to deep learning & neural networks with keras
    predicting the weather with artificial neural networks
    1…567…28

    要約して、neural networks の人気コース10選をご紹介します。

    • AI Foundations for Everyone: IBM
    • Generative Adversarial Networks (GANs): DeepLearning.AI
    • TensorFlow: Advanced Techniques: DeepLearning.AI
    • Practical Data Science on the AWS Cloud: DeepLearning.AI
    • Machine Learning on Google Cloud: Google Cloud
    • Self-Driving Cars: University of Toronto
    • AI Product Management: Duke University
    • AI for Medicine: DeepLearning.AI
    • Introduction to TensorFlow for Artificial Intelligence, Machine Learning, and Deep Learning: DeepLearning.AI
    • Neuroscience and Neuroimaging: Johns Hopkins University

    Machine Learningで学べるスキル

    Pythonプログラミング (33)
    TensorFlow (32)
    ディープラーニング (30)
    人工ニューラルネットワーク (24)
    ビッグデータ (18)
    統計的分類 (17)
    強化学習 (13)
    代数 (10)
    ベイズ (10)
    線型代数学 (10)
    線形回帰 (9)
    NumPy (9)

    ニューラルネットワークに関するよくある質問

    • Neural networks, also known as neural nets or artificial neural networks (ANN), are machine learning algorithms organized in networks that mimic the functioning of neurons in the human brain. Using this biological neuron model, these systems are capable of unsupervised learning from massive datasets.

      This is an important enabler for artificial intelligence (AI) applications, which are used across a growing range of tasks including image recognition, natural language processing (NLP), and medical diagnosis. The related field of deep learning also relies on neural networks, typically using a convolutional neural network (CNN) architecture that connects multiple layers of neural networks in order to enable more sophisticated applications.

      For example, using deep learning, a facial recognition system can be created without specifying features such as eye and hair color; instead, the program can simply be fed thousands of images of faces and it will learn what to look for to identify different individuals over time, in much the same way that humans learn. Regardless of the end-use application, neural networks are typically created in TensorFlow and/or with Python programming skills.‎

    • Neural networks are a fundamental concept to understand for jobs in artificial intelligence (AI) and deep learning. And, as the number of industries seeking to leverage these approaches continues to grow, so do career opportunities for professionals with expertise in neural networks. For instance, these skills could lead to jobs in healthcare creating tools to automate X-ray scans or assist in drug discovery, or a job in the automotive industry developing autonomous vehicles.

      Professionals dedicating their careers to cutting-edge work in neural networks typically pursue a master’s degree or even a doctorate in computer science. This high-level expertise in neural networks and artificial intelligence are in high demand; according to the Bureau of Labor Statistics, computer research scientists earn a median annual salary of $122,840 per year, and these jobs are projected to grow much faster than average over the next decade.‎

    • Absolutely - in fact, Coursera is one of the best places to learn about neural networks, online or otherwise. You can take courses and Specializations spanning multiple courses in topics like neural networks, artificial intelligence, and deep learning from pioneers in the field - including deeplearning.ai and Stanford University. Coursera has also partnered with industry leaders such as IBM, Google Cloud, and Amazon Web Services to offer courses that can lead to professional certificates in applied AI and other areas. You can even learn about neural networks with hands-on Guided Projects, a way to learn on Coursera by completing step-by-step tutorials led by experienced instructors.‎

    • Before starting to learn neural networks, it's important to have experience creating and using algorithms since neural networks run on complicated algorithms. You should also have fundamental math skills at least, but you'll be at a better advantage if you have knowledge of linear algebra, calculus, statistics, and probability. Being proficient at problem-solving is also important before starting to learn neural networks. An understanding of how the human brain processes information is helpful since artificial neural networks are patterned after how the brain works. You'll also benefit from having experience using any programming language, in particular Java, R, Python, or C++. This includes experience using these languages' libraries, which you'll access to apply the algorithms used in neural networks.‎

    • People who are best suited for roles in neural networks are innovative, interested in technology, and have the ability to identify patterns in large amounts of data and draw conclusions from them. People who have a desire to make life and work easier for human beings through artificial technology are well suited for roles in neural networks too. Also, people who have good programming skills and data engineering skills like SQL, data analysis, ETL, and data visualization are likely well suited for roles in neural networks.‎

    • If you are interested in the field of artificial intelligence, learning about neural networks is right for you. If your current or future position involves data analysis, pattern recognition, optimization, forecasting, or decision-making, you might also benefit from learning neural networks. Neural networks are also used in image recognition software, speech synthesis, self-driving vehicles, navigation systems, industrial robots, and algorithms for protecting information systems, so if you're interested in these technologies, learning neural networks may be helpful to you.‎

    このFAQの内容は、情報提供のみを目的としています。受講生は、自分の個人的、職業的、経済的な目標に合ったコースやその他の資格を取得するために、さらに調べることをお勧めします。
    探索する他のトピック
    Placeholder
    芸術と人文
    338コース
    Placeholder
    ビジネス
    1095コース
    Placeholder
    コンピューターサイエンス
    668コース
    Placeholder
    データサイエンス
    425コース
    Placeholder
    情報技術
    145コース
    Placeholder
    健康
    471コース
    Placeholder
    数学と論理
    70コース
    Placeholder
    自己啓発
    137コース
    Placeholder
    物理科学とエンジニアリング
    413コース
    Placeholder
    社会科学
    401コース
    Placeholder
    言語学習
    150コース

    Coursera Footer

    キャリアをスタート、またはキャリアアップする

    • Google データアナリスト
    • Googleプロジェクトマネジメント
    • グーグルUXデザイン
    • Google ITサポート
    • IBMデータサイエンス
    • IBMデータアナリスト
    • ExcelとRを使用したIBMデータ分析
    • IBMサイバーセキュリティ・アナリスト
    • IBMデータエンジニアリング
    • IBMフルスタック・クラウドデベロッパー
    • Facebookソーシャルメディアマーケティング
    • Facebookマーケティング分析
    • Salesforce営業開発担当者
    • Salesforce Sales Operations
    • インテュイット簿記
    • Google Cloud 認定資格の取得準備:クラウドアーキテクト
    • Google Cloud 認定資格の取得準備:クラウドデータエンジニア
    • キャリアをスタートさせましょう
    • 証明書の取得準備
    • キャリアアップ

    人気のあるトピックを閲覧

    • 無料コース
    • 言語を学ぶ
    • Python
    • Java
    • Webデザイン
    • SQL
    • Cursos Gratis
    • Microsoft Excel
    • プロジェクトマネジメント
    • サイバーセキュリティ
    • 人事
    • データサイエンスの無料コース
    • 英語のスピーキング
    • コンテンツのライティング
    • フルスタックWeb開発
    • 人工知能
    • Cプログラミング
    • コミュニケーションスキル
    • ブロックチェーン
    • すべてのコースを見る

    人気のコースと記事

    • データサイエンスチームのためのスキル
    • データ駆動型意思決定
    • ソフトウェアエンジニアリングのスキル
    • エンジニアリングチームのためのソフトスキル
    • マネジメントスキル
    • マーケティングのスキル
    • セールスチームのためのスキル
    • プロダクトマネージャのスキル
    • ファイナンススキル
    • イギリスで人気のデータサイエンスコース
    • Beliebte Technologiekurse in Deutschland
    • 人気のサイバーセキュリティ証明書
    • 人気の IT 証明書
    • 人気の QL 証明書
    • マーケティングマネージャーキャリアガイド
    • プロジェクトマネージャーキャリアガイド
    • Pythonプログラミングスキル
    • Web開発者キャリアガイド
    • データアナリストのスキル
    • UXデザイナーのためのスキル

    オンラインで学位または証明書を取得する

    • MasterTrack®認定
    • プロフェッショナル認定
    • 大学証明書
    • MBAとビジネス学位
    • データサイエンスの学位
    • コンピュータサイエンスの学位
    • データ分析の学位
    • 公衆衛生学位
    • 社会科学の学位
    • 経営学の学位
    • ヨーロッパのトップレベルの大学の学位
    • 修士号
    • 学士号
    • パフォーマンスパスウェイの学位
    • BSc コース
    • 学士号とは何ですか?
    • 修士号の取得にはどれくらい時間がかかりますか?
    • オンラインMBAに価値がありますか?
    • 大学院で学ぶための7つの方法
    • すべての証明書を表示する

    Coursera

    • 概要
    • Courseraのサービス
    • リーダーシップ
    • キャリア
    • カタログ
    • Coursera Plus
    • プロフェッショナル認定
    • MasterTrack®認定
    • 学位
    • 企業用
    • 政府向け
    • キャンパス向け
    • パートナーになる
    • 新型コロナウイルス対策

    コミュニティ

    • 受講生
    • パートナー
    • 開発者
    • ベータテスター
    • 翻訳者
    • ブログ
    • 技術ブログ
    • 教育センター

    さらに表示

    • 報道関係者
    • 投資家
    • 規約
    • プライバシー
    • ヘルプ
    • アクセシビリティ
    • お問い合わせ
    • 記事
    • ディレクトリ
    • アフィリエイト
    • Modern Slavery Statement(現代奴隷法に関する表明)
    場所を選ばす学習する
    App StoreからダウンロードGoogle Playで取得
    Placeholder
    ©2022 Coursera Inc.All rights reserved.
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder