このコースについて
2,485 最近の表示

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

中級レベル

約9時間で修了

推奨:4 weeks of study, 2-5 hours/week...

英語

字幕:英語

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

中級レベル

約9時間で修了

推奨:4 weeks of study, 2-5 hours/week...

英語

字幕:英語

シラバス - 本コースの学習内容

1
2時間で修了

Solving the Business Problems

In this module, you will explain why comparing healthcare providers with respect to quality can be beneficial, and what types of metrics and reporting mechanisms can drive quality improvement. You'll recognize the importance of making quality comparisons fairer with risk adjustment and be able to defend this methodology to healthcare providers by stating the importance of clinical and non-clinical adjustment variables, and the importance of high-quality data. You will distinguish the important conceptual steps of performing risk-adjustment; and be able to express the serious nature of medical errors within the US healthcare system, and communicate to stakeholders that reliable performance measures and associated interventions are available to help solve this tremendous problem. You will distinguish the traits that help categorize people into the small group of super-utilizers and summarize how this population can be identified and evaluated. You'll inform healthcare managers how healthcare fraud differs from other types of fraud by illustrating various schemes that fraudsters use to expropriate resources. You will discuss analytical methods that can be applied to healthcare data systems to identify potential fraud schemes.

...
8件のビデオ (合計61分), 1 reading, 1 quiz
8件のビデオ
Module 1 Introduction3 分
Provider Profiling10 分
How to Make Fairer Comparisons Using Risk Adjustment6 分
How Risk Adjustment is Performed8 分
Patient Safety: Measuring Adverse Events7 分
Super-Utilizers of Health Resources10 分
Fraud Detection10 分
1件の学習用教材
A Note From UC Davis10 分
1の練習問題
Module 1 Quiz30 分
2
2時間で修了

Algorithms and "Groupers"

In this module, you will define clinical identification algorithms, identify how data are transformed by algorithm rules, and articulate why some data types are more or less reliable than others when constructing the algorithms. You will also review some quality measures that have NQF endorsement and that are commonly used among health care organizations. You will discuss how groupers can help you analyze a large sample of claims or clinical data. You'll access open source groupers online, and prepare an analytical plan to map codes to more general and usable diagnosis and procedure categories. You will also prepare an analytical plan to map codes to more general and usable analytical categories as well as prepare a value statement for various commercial groupers to inform analytic teams what benefits they can gain from these commercial tools in comparison to the licensing and implementation costs.

...
7件のビデオ (合計51分), 1 quiz
7件のビデオ
Clinical Identification Algorithms (CIA)9 分
HEDIS and AHRQ Quality Measures7 分
Analytical Groupers6 分
Open Source Groupers - Grouping Diagnoses and Procedures7 分
Open Source Groupers - Comorbidity, Patient Risk, and Drugs8 分
Commercial Groupers10 分
1の練習問題
Module 2 Quiz30 分
3
3時間で修了

ETL (Extract, Transform, and Load)

In this module, you will describe logical processes used by database and statistical programmers to extract, transform, and load (ETL) data into data structures required for solving medical problems. You will also harmonize data from multiple sources and prepare integrated data files for analysis.

...
6件のビデオ (合計49分), 1 quiz
6件のビデオ
Analytical Processes and Planning10 分
Data Mining and Predictive Modeling - Part 16 分
Data Mining and Predictive Modeling - Part 26 分
Extracting Data for Analysis10 分
Transforming Data for Analytical Structures11 分
1の練習問題
Module 3 Quiz30 分
4
5時間で修了

From Data to Knowledge

In this module, you will describe to an analytical team how risk stratification can categorize patients who might have specific needs or problems. You'll list and explain the meaning of the steps when performing risk stratification. You will apply some analytical concepts such as groupers to large samples of Medicare data, also use the data dictionaries and codebooks to demonstrate why understanding the source and purpose of data is so critical. You will articulate what is meant by the general phase -- “Context matters when analyzing and interpreting healthcare data.” You will also communicate specific questions and ideas that will help you and others on your analytical team understand the meaning of your data.

...
7件のビデオ (合計49分), 1 reading, 2 quizzes
7件のビデオ
Solving Analytical Problems with Risk Stratification8 分
Risk Stratification: Variables, Groupers, Predictors8 分
Risk Stratification: Model Creation/Evaluation and Deployment of Strata9 分
Medicare Claims Data - Source and Documentation8 分
Final Tips to Help Understand and Interpret Healthcare Data8 分
Course Summary2 分
1件の学習用教材
Welcome to Peer Review Assignments!10 分
1の練習問題
Module 4 Quiz30 分

講師

Avatar

Brian Paciotti

Healthcare Data Scientist
Research IT

カリフォルニア大学デービス校(University of California, Davis)について

UC Davis, one of the nation’s top-ranked research universities, is a global leader in agriculture, veterinary medicine, sustainability, environmental and biological sciences, and technology. With four colleges and six professional schools, UC Davis and its students and alumni are known for their academic excellence, meaningful public service and profound international impact....

Health Information Literacy for Data Analyticsの専門講座について

This Specialization is intended for data and technology professionals with no previous healthcare experience who are seeking an industry change to work with healthcare data. Through four courses, you will identify the types, sources, and challenges of healthcare data along with methods for selecting and preparing data for analysis. You will examine the range of healthcare data sources and compare terminology, including administrative, clinical, insurance claims, patient-reported and external data. You will complete a series of hands-on assignments to model data and to evaluate questions of efficiency and effectiveness in healthcare. This Specialization will prepare you to be able to transform raw healthcare data into actionable information....
Health Information Literacy for Data Analytics

よくある質問

  • 修了証に登録すると、すべてのビデオ、テスト、およびプログラミング課題(該当する場合)にアクセスできます。ピアレビュー課題は、セッションが開始してからのみ、提出およびレビューできます。購入せずにコースを検討することを選択する場合、特定の課題にアクセスすることはできません。

  • コースに登録する際、専門講座のすべてのコースにアクセスできます。コースの完了時には修了証を取得できます。電子修了証が成果のページに追加され、そこから修了証を印刷したり、LinkedInのプロフィールに追加したりできます。コースの内容の閲覧のみを希望する場合は、無料でコースを聴講できます。

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。