Chevron Left
Apply Generative Adversarial Networks (GANs) に戻る

deeplearning.ai による Apply Generative Adversarial Networks (GANs) の受講者のレビューおよびフィードバック

4.8
432件の評価

コースについて

In this course, you will: - Explore the applications of GANs and examine them wrt data augmentation, privacy, and anonymity - Leverage the image-to-image translation framework and identify applications to modalities beyond images - Implement Pix2Pix, a paired image-to-image translation GAN, to adapt satellite images into map routes (and vice versa) - Compare paired image-to-image translation to unpaired image-to-image translation and identify how their key difference necessitates different GAN architectures - Implement CycleGAN, an unpaired image-to-image translation model, to adapt horses to zebras (and vice versa) with two GANs in one The DeepLearning.AI Generative Adversarial Networks (GANs) Specialization provides an exciting introduction to image generation with GANs, charting a path from foundational concepts to advanced techniques through an easy-to-understand approach. It also covers social implications, including bias in ML and the ways to detect it, privacy preservation, and more. Build a comprehensive knowledge base and gain hands-on experience in GANs. Train your own model using PyTorch, use it to create images, and evaluate a variety of advanced GANs. This Specialization provides an accessible pathway for all levels of learners looking to break into the GANs space or apply GANs to their own projects, even without prior familiarity with advanced math and machine learning research....

人気のレビュー

UD

2020年12月5日

I really liked the exposure to preparing various loss functions in paired and non-paired GANs, introduction to other applications, and many great changes to improve the quality of the networks!

MM

2021年1月23日

GANs are awesome, solving many real-world problems. Especially unsupervised things are cool. Instructors are great and to the point regarding theoretical and practical aspects. Thankyou!

フィルター:

Apply Generative Adversarial Networks (GANs): 51 - 75 / 91 レビュー

by Paritosh B

2020年12月5日

Great content. Thanks a lot for creating this wonderful course. :)

by Rohan H J

2021年8月3日

Very detailed study. A must learn for people working with GANs

by Shivender K

2021年1月24日

Very complex specialization but significantly helpful

by Samuel K

2021年3月4日

Awesome course! Direct application to my research!

by nghia d

2020年12月21日

amazing course! thanks coursea, thanks Instructors

by Евгений Ц

2021年1月31日

Easy yet fundamental enough for an eager learner.

by Shams A

2021年7月23日

Amazing course. Thanks so much for offering it!

by Ali G

2021年7月22日

Very informative and easy-to-understand!

by Gokulakannan S

2020年12月26日

Nice course enjoyed it a lot. Thanks!

by James H

2020年11月17日

Very thorough and clearly explained.

by Xiaoyu X

2021年8月1日

Very good lectures and assignments!

by Kenneth N

2022年6月27日

exceptional and clear instructions

by Jesus A

2020年11月22日

Great applications cases of GANs

by Linjun Y

2022年8月17日

G​reat course for everyone!

by Dela C F S

2021年6月6日

Full of amazing content! :D

by Manuel R

2021年3月30日

It was a nice experience!

by amadou d

2021年3月11日

Excellent! Thank You all!

by brightmart

2020年11月11日

GREAT COURSE AT COURSERA!

by Cường N N

2020年12月8日

This course is very good

by 晋习

2021年10月17日

data augment is helpful

by M. H A P

2021年4月7日

What a great course

by Diego C N

2020年11月1日

An amazing Course

by Tim C

2020年12月8日

Incredible! :)

by Vishnu N S

2021年7月26日

Great Course

by Vignesh M

2020年11月26日

Wonderful!