This course can also be taken for academic credit as ECEA 5612, part of CU Boulder’s Master of Science in Electrical Engineering degree.
このコースについて
Undergraduate-level calculus, differential equations and linear algebra
学習内容
Distinguish non-degenerate and degenerate cases and use appropriate methods.
Perform calculations using the time-independent perturbation theory.
Describe absorption and stimulated emission processes.
Obtain approximate solutions using the variational method.
習得するスキル
- Energy
- Energy Level
- Perturbation Theory
- Quantum Mechanics
Undergraduate-level calculus, differential equations and linear algebra
提供:

コロラド大学ボルダー校(University of Colorado Boulder)
CU-Boulder is a dynamic community of scholars and learners on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions in the prestigious Association of American Universities (AAU), we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies.
修士号の取得を目指しましょう
シラバス - 本コースの学習内容
Time-independent Perturbation Theory
In this module we will introduce the course on approximation methods commonly used in quantum mechanics and then discuss time-independent perturbation theory. We will first discuss non-degenerate perturbation theory and derive useful formulas for the first- and second-order corrections. We will then discuss degenerate perturbation theory. We will also discuss specific examples where the various perturbation methods are used - Stark effect, fine structure and Zeeman effect.
Time-dependent Perturbation Theory
In this module, we will introduce interaction picture and derive time evolution equations. After discussing a simple but illuminating example of two-state system, we develop time-dependent perturbation theory and discuss the probability of transitions between quantum states induced by external perturbation.
Other Approximation Methods
This module covers several non-perturbative approximation methods. They are the tight binding method, variational method and the use of finite basis set.
Quantum Mechanics for Engineers専門講座について
This Specialization is intended for engineers seeking to acquire fundamental understanding of quantum mechanics which are the basis of modern electrical, mechanical and quantum engineering. Through 3 courses, you will learn (1) basic concepts such as superposition and entanglement of quantum states, measurement in quantum mechanics and uncertainty principle, (2) mathematical tools needed to describe and manipulate quantum states, (3) advanced theory of angular momentum and (4) approximation methods widely applicable in many fields.

よくある質問
いつ講座や課題にアクセスできるようになりますか?
この専門講座をサブスクライブすると何を行うことができるようになりますか?
学資援助はありますか?
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。