Chevron Left
Прикладные задачи анализа данных に戻る

モスクワ物理工科大学(Moscow Institute of Physics and Technology) による Прикладные задачи анализа данных の受講者のレビューおよびフィードバック

4.4
546件の評価
85件のレビュー

コースについて

Методы машинного обучения — будь то алгоритмы классификации или регрессии, методы кластеризации или алгоритмы понижения размерности — применяются к подготовленным данным с вычисленными признаками для решения уже сформулированной задачи. Однако специалисты по анализу данных редко оказываются в такой идеальной ситуации. Обычно перед ними ставят задачи, которые нуждаются в уточнении формулировки, выборе метрики качества и протокола тестирования итоговой модели. Данные, с которыми нужно работать, часто представлены в непригодном виде: они зашумлены, содержат ошибки и выбросы, хранятся в неудобном формате и т. д. В этом курсе мы разберем прикладные задачи из различных областей анализа данных: анализ текста и информационный поиск, коллаборативная фильтрация и рекомендательные системы, бизнес-аналитика, прогнозирование временных рядов. На их примере вы узнаете, как извлекать признаки из разнородных данных, какие при этом возникают проблемы и как их решать. Вы научитесь сводить задачу заказчика к формальной постановке задачи машинного обучения и поймёте, как проверять качество построенной модели на исторических данных и в онлайн-эксперименте. На каждой задаче мы изучим плюсы и минусы пройденных алгоритмов машинного обучения. Прослушав этот курс, вы познакомитесь с распространенными типами прикладных задач и будете понимать схемы их решения. Задания и видео курса разработаны на Python 2....

人気のレビュー

PK

May 24, 2018

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

IS

Jan 21, 2019

Замечательный курс, полный примеров из реальной жизни для получения опыта. Очень полезные и понятные лекции, конспекты. Очень рад, что смог пройти этот курс.

フィルター:

Прикладные задачи анализа данных: 1 - 25 / 84 レビュー

by Павел С

Jul 23, 2018

В курсе много поверхностных вещей, хотя в целом он полезный

Анализ изображений - очень много болтовни и мало практики, но там хотя бы упражнение полезное и интересное

А вот анализ текстов мне совсем не понравился

Пример и задание поверхностные и не интересные. Вместо того чтобы углубиться в характерные для анализа текстов вещи - лемматизация, стемминг, учет биграмм, стоп-слова, word2vec и т.д., дали оценку обычных классификаторов над какими то признаками, которые, кстати, в этом модуле вообще не обсуждались. А те особенности которые обсуждались - не показаны. В данных примерах почти ничего нового!

За тест по ранжированию в первом модуле недели 4 тоже жирный дизлайк. Там одни и те же ответы переформулированные, при этом все в некотором смысле могут быть правильными. Проблема с этим тестом известна уже более 2х лет судя по форуму, почему бы не переделать?

by Vadim K

Jan 04, 2019

Один из самых лёгких курсов программы. Понравилась обзорность курса, но вот полезность с точки зрения практики около нулевая. Первая неделя рассказала про прогнозирование временных рядов конкретными моделями, но не рассказано насколько эти модели приближены к реальности, даже с заработной платой оказалось, что прогноз далёк от реальности, не рассказано и про регрессию на основе каких-то базовых показателей типо ВВП, инфляции итд итп. Вторая неделя про компьютерная зрения раскрывает интересную тему, но задания оторваны от лекций, а сами лекции толком ничего не рассказывают, опять таки годится в качестве обзора, но не годится в качестве обучения. Третья неделя выделяется в положительную сторону. Четвертая неделя оставила двоякое впечатление, квиз на 3 задание которого все жалуются, и последнее задание, в котором из-за порядка данных решение не принимается. В последнем задании так же неясна практическая ценность. В общем, хотелось бы, чтобы над этим курсом ещё поработали, он выглядит очень сырым.

by Мельникова Е А

Jun 28, 2019

Вторая неделя заставила просто отписаться от курса.

Отвратительно.

by Дьяченко С И

Jun 14, 2019

Задачи неплохие, но всё равно есть неприятный осадок от данного курса, а именно по этим причинам:

1) Не везде есть конспекты - во всех курсах специализации изучал теоретический материал по конспектам- мне так удобнее

2) Python 2 - если в предыдущих курсах это было не критично, то в данном курсе намного лучше Python 3 был бы. Та же библиотека Tensorflow, которая используется в данном курсе, требует Python 3 например.

3) Не обновляются Ipynb блокноты- со времени последнего обновления блокнотов многие из используемых библиотек поменялись, и некоторые функции или параметры функций уже не работают. Последнее является бедой всех курсов специализации.

by Vladimir A

May 25, 2019

Полезно, но поверхностно. Часть про временные ряды скучновата, зато про нейронные сети слушать было одно удовольствие.

by Egor G

May 09, 2019

Недели 1 и 3 интересные.

На неделе 2 огромная пропасть между содержанием лекций и практическим заданием. Все равно, что лектор рассказывал бы "Какая красивая Луна, многи люди мечтают туда слетать", показывал бы фото Луны... - а в задании нужно было расчитать формулу тяги двигателя ракеты, летящей на Луну, без подготовки.

На неделе 3 задание по программированию не снабжено детальными рекомендациями и примером кода. Занимает очень много времени, т.к. непонятно, что именно нужно делать. Одно из самых трудозатратных заданий по программированию всей специализации. Я не помню, чтобы где-то в специализации, например, объяснялось, как сортировать значения одного массива на основе порядка другого массива (а, может, нужно было вообще не так делать...)

by Sergey

Apr 11, 2019

The first week is totally outstanding. In fact, it has helped me a lot with my current project. In a nutshell, the course instructors have covered the field of the time series analysis, highlighting the important theory, and illustrating it with a nice programming example. That alone makes the course highly useful, and worth completing.

The second week - glossing over the entire field of image processing - was a good try. It is really nice that the course instructors have introduced TensorFlow - that's the way to go. Although, it has developed over the last two years, so it would make sense to rewrite the assignment using tf.keras. Perhaps, it would also make more sense to focus more on some of the image processing aspects - such as convolutional layers - instead of trying to cover everything at once.

The last two weeks definitely could've been improved. The amount and scope of theory is sensible, although in the multiple choice tests and the assignments, I literally had to psychoanalyze the instructors. There are two ways to deal with that: either to relax the 100% requirement in the multiple choice tests, or to better convey the questions. The same applies to the latest programming assignment.

by Гаврилин Н П

Apr 01, 2019

Очень жаль, что материалы курса не позволяют самостоятельно работать ни с самими нейросетями, ни с инструментами их разработки

by Шаланкин М Д

Mar 14, 2019

Не рекомендую к прохождению, за такую цену есть много актуальных новых курсов, а на всей этой специализации (начиная с третьего курса и далее) кривые задания, отсутствие поддержки, минимум студентов, которые смогут проверить вашу работу. Мне больше курс от вышки понравился.

by Domnin V

Mar 13, 2019

По моему мнению курс не дотягивает до уровня предыдущих серий специализации ни по информативности, ни по полезности. Исключение - неделя 1, про временные ряды очень увлекательно.

До конца не понял, зачем этот курс здесь.

by Гридасов И И

Feb 05, 2019

Курс даёт широкий взгляд на то, какие бывают задачи в анализе данных, с подробными pipelin-ами решений. В целом курс не сложный, но крайне полезный.

by Artem D

Jan 21, 2019

Финальный проект очень понравился (делал "Идентификация интернет-пользователей")! Реальная практика применения моделей, а также сабмишна на Каггле.

Если ваши заания длительное время не проверяют, не переживайте, к концу сессии народ точно появится.

Еще раз: проект очень классный и инересный! Не без шероховатостей, но все решаемо, в т.ч. с помощью форума.

by Ivan S

Jan 21, 2019

Замечательный курс, полный примеров из реальной жизни для получения опыта. Очень полезные и понятные лекции, конспекты. Очень рад, что смог пройти этот курс.

by Alexander P

Jan 20, 2019

It would be nice to have more practice with neuronets. Anyway it's very interesting course. Thanks!

by YaMolekula

Jan 08, 2019

Совет по курсу: слушать со скоростью 2х

Мое мнение по курсу:

1) Первая неделя интересная, про временные ряды маловато. Хотелось услышать про (G)ARCH и другие методы анализа временных рядо

2) Вторая неделя - мрак, все испортила

by Поздняков Ю О

Dec 29, 2018

Тесты очень напрягают. Хотелось бы иметь больше примеров задач и разборов решений с цифрами от а до я.

by Рядовиков А В

Nov 09, 2018

побольше бы ссылок на исследования врем рядов (я пока на 1й неделе)

by Любовь С

Aug 30, 2018

Очень уж галопом по Европам прошлись по нейросетям - отсюда ценность 2-й недели сомнительна. В остальном - хорошо.

by Somov O

Jul 25, 2018

Самый легкий курс за всю специализацию, самое полезное на мой взгляд - анализ временных рядов

by Pile I

Jul 24, 2018

Задача на последней неделе изрядно попила крови - хотелось бы , чтобы формулировка была более четкой

by Самойлов А С

Jul 05, 2018

Курс вызвал у меня неоднозначные впечатления. Очень понравилась неделя Евгения с временными рядами. В целом в курсе идет краткий обзор всевозможных практических задач, при этом очень мало разборов задач. Было неплохо по каждой теме рассмотреть детально какой-нибудь реальную задачу, со всеми подводными камнями. Конечно я понимаю, что детально разобрать глубокие нейронные сети в компьютерном зрении, с учетом того, что в специализации по-сути их и не было, нереально, но в рекомендательных системах можно было бы разобрать что-то реальное к kaggle или что-нибудь настоящее. Там нет ни одного примера, а в задании люди вешаются от сложности. Нельзя от людей требовать то, чему вы их не учите. pdf лекции и презентации (за исключением временных рядов) в этом курсе подготовлены слабее, чем в остальных курсах специализации.

by Anvar A

Jun 23, 2018

Поставил 3 за плохую неделю с компьютерным зрением. Нейронные сети должны преподаваться отдельным курсом (слишком большая тема). В дополнение, формулировка задачи по ранжированию тоже ужасная. Пришлось помучиться с заданием. Из хорошего. Неделя по временным рядам классная. Неделя с текстами тоже интересная. В любом случае, спасибо за организацию курса и специализации!

by Gleb S

Jun 12, 2018

Начало курса было интересным, но откровенно разочаровали практические задания. Вторая половина курса оказалась очень поверхностной и реального опыта не дала

by Timur B

Jun 10, 2018

Неделя с нейронными сетями - тихий ужас.Первая неделя очень полезная, но можно чуть более подробнее объяснить некоторые моменты.Последняя неделя - мощь, задание очень непонятное, убивает время сильно, но позволяет немного поюзать Python.

by Ленар С

Jun 02, 2018

интересный курс. правда неделя про машинное зрение скорее не про машинное зрение, а про легкое введение в tensorflow, нет ощущения, что по этой теме получаешь знания из programming assignment. а так в целом полезные и итересные задания