Chevron Left
The Data Scientist’s Toolbox に戻る

ジョンズ・ホプキンズ大学(Johns Hopkins University) による The Data Scientist’s Toolbox の受講者のレビューおよびフィードバック

4.6
33,063件の評価
7,061件のレビュー

コースについて

In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, GitHub, R, and RStudio....
ハイライト
Foundational tools

(243件のレビュー)

Introductory course

(1056件のレビュー)

人気のレビュー

SF

2020年4月14日

As a business student from Bangladesh who is aspiring to be a data analyst in near future, I love this course very much. The quizzes and assessments were the places to check how much I exactly learnt.

LR

2017年9月7日

It was really insightful, coming from knowing almost nothing about statistics or experimental design, it was easy to understand while not feeling shallow. Just the right amount of information density.

フィルター:

The Data Scientist’s Toolbox: 4726 - 4750 / 6,958 レビュー

by Harrison K

2017年5月27日

This course was a very good broad overview of what data science is. I've taken some courses tangential to the topic before, so it wasn't particularly groundbreaking. I encountered some complications installing software and didn't feel like it was always very clear what order I was supposed to do things in, and I wished I'd had more help since installation issues can crop up much later and be hard to diagnose.

by William H

2020年5月19日

The text to voice simulation needs work. In particular, it does not understand that when the word "record" is used as a noun, the accent is on the first syllable. When it is used as a verb, the accent is on the second. Also, to output markdown files to pdf, on Windows machines, one needs MikTex and to link it to R Studio. I have downloaded MikTex, but I have not yet figured out how to link it to R Studio.

by Benjamas T

2020年6月3日

The content of the course is very detailed, including a step-by-step guide which really supports beginner as the course promoted. The pace of the course is just right. The only comment here is that, while I understand the underlying reason, the course is presented using a text-to-speech voice which makes the course sleep inducing. Overall, it is a good starting point for those who want to learn R without a

by Ying T

2017年6月4日

I like the structure of this course, it introduces essential tools for people who just begin the journey of becoming a programmer. But the quality of videos needs to be improved, especially the instructor is basically reading the slides and sometimes it's distractive and boring... Besides, I don't think it's necessary to include all the introduction sessions for other courses in this specialization.

by Deleted A

2020年11月19日

This was a very good introduction, although IO found some of the technical requirements difficult to understand. The AI voice takes a bit of getting used to; just understand that words will be mispronounced periodically. That is not enough to cause any big problems. Hands on practice is the key to get you through. Because this course is a foundation, it goes without saying that you must practice.

by James J

2016年12月26日

Are you ever tired of long-winded professors, focusing on a lecture for an hour or more, or spending hundreds of dollars for a class? Well, this course gives you the structure of a course, but the video lectures are concise, the topic is to get you in the door for data science, and all of my questions were answered quickly. I recommend this course to anyone who wants to learn data science.

by Yean D

2020年5月25日

Great Course. But for completely beginner who don't have any previous experience in programming or have some experience in other language but not in R Programming Language, might find it difficult to cope with. Many of the times, I had to google and watch other tutorials in youtube to understand some lessons of the course. Besides the artificial robotic voice was quite irritating for me.

by Danish T

2020年6月19日

I get that this course is more catered towards people who have never set u Softwares like Matlab and Rstudio and have never utilized Git but I felt that if you are touching these topics, it would be better if it were more in-depth and made a strong foundation. The statistics part of the course was excellent but I felt more attention could be paid towards Git and Bash and CLI in general.

by José L P m

2020年11月24日

I started with zero knowledge about data science and now I have learn about I practiced the basic tools that can be used for any data processing and presentation job.

Duration and deepnest of material is ok and I could learn at my pace while having additional documentation in case I need more deep knowledge of the tools and techniques.

I plan to continue with other Data Science courses.

by Victor K

2018年11月7日

Good introduction to the Data Science Toolbox. I found the course very engaging, setting up foundation for further studies. Also, very nice platform supporting In my mind though taking this course makes sense only in conjunction with the other courses within this Data Science Specialisation as knowledge you get from Data Science Toolbox will not be sufficient for practical application.

by Oleksii P

2016年11月22日

This is my first course on Coursera so i didn't really know what to expect and i apologise in advance for my ignorance. The course only takes you 8-10 hours or so to complete (even accounting for reading external sources) spread across a month. I enjoyed it, but it doesn't feel like i learned a lot and i think it could be a bit more intensive. Looking forward to R Programming (part 2)

by Martin M

2017年3月11日

With my background, this was a lot of repetition of information that I already knew, but I was happy to have the reminder and it would be an excellent introduction to the specialization for others who do not have as much of a data science/computer science background. Overall, I feel that the course was worth my time and I feel it is a great start to the Data Science Specialization.

by Hong C

2020年6月29日

It is really a long journey to me ( 6 months) and the study itself has ups and downs. The first few courses and last few course are relatively easy to me, but the statistics reference and regression model are really hard, and Capstone is the most difficult and time consuming course/project ever. I am glad it is all over and pretty sure it will be worth the time and effort on it.

by Jen V

2019年10月8日

I found it somewhat difficult to figure out how to push the file to GitHub (luckily I did find some helpful info in the forums), but otherwise found most of this course very easy. I can't figure out how to download the slides in such a way that allows me to click on hyperlinks, and I've seen other people say the same thing. I also would recommend making the code & graphs bigger.

by Keuntae K

2017年9月10日

Overall, a great course. However, I hope that the course will focus on explaining overview and principles of data science, not explaining how to use toolboxes such as R and Github. R and Github as data science toolboxes are not well explained in this course because it was quite difficult for me to follow what the instructor showed in his slides about using codes in R or Github.

by Маношин А А

2020年3月20日

This is a good course. You will recrive knowledge that was promised, but 1 mounth for this is too long. 2 weeks is long for this too, but at least appropriate. Also I have encountered some problems in the process that were not mentioned in course. It was not too hard to solve them but this is it.

Thank you for your course! I will definitely take the next course in the program.

by Rick M

2020年9月12日

Enjoyed the course and learned a lot overall. It was the kind of intro and overview of data science I was looking for. Several of the quizzes need a review of the answers in the multiple choice questions. As my first class taken in Coursera I found having to retake a quiz and game it to get the "correct" answer that was not actually the accurate answer a little frustrating.

by Jose A C

2018年11月29日

I think the course is very good. I believe that it could be improved if the videos could reflect a more realistic approach on how to get to certain sites and how to download programs. Even though the students get the final result, in some cases it is frustrating and time consuming to determine if what we are doing is correct. In general, I am very satisfied with the course.

by Jessika T

2022年2月18日

Good course, but the peer reviews are a hot mess. Most students that I reviewed did not even try to test correctly. When my project was reviewed, I was incorrectly graded and had my final score lowered by someone that either had mal intentions or was not bothering to look at instructions. Very disappointed that any type of grade is left in the hands of unchecked "peers".

by Karim M

2021年7月5日

Decent course for beginners with a few quirks. Assignments and quizzes are straightforward but don't necessarily test a good depth of knowledge. The auto text to speech is the most annoying of all with many pronunciation errors. Videos refer to links that don't exist in the text a lot of times.

Overall, it's a good course if you need to get your feet wet in data science.

by Abir N

2020年7月10日

This course is about nuts and bolts of R software, Rstudio interface, Git and Github with a brief inroduction to version control and other prerequisite of building a data science project. The only downside of the course is it uses automated videos which is a bit mechanical sounding.Though it is my personal opinion but that's the the cause of a missing star in my review.

by Dylan B

2020年7月8日

All of the course content is excellent however there are issues with the peer review system. The final project is peer reviewed by only 2 people (per submission) so the mark has a very high amount of variance and so is essentially luck based, which means you have to submit many times until you get a pass mark on it. Other than this there are no problems with the course.

by neil v a

2017年11月14日

It's all fine and well to just learn and do things by watching youTube and reading internet websites.

But your learning needs some structure, because at the beginning of the process, you don't know what is important and what is not ! I found the course good at helping give me an oversight to the subject, and getting me up and going with the software components needed.

by Max M

2019年2月16日

I believe an updated version would be beneficial, as some R packages have now somewhat different functionalities. Furthermore, I would have liked a bit more instructions into how to create a markdown file. Otherwise fairly easy course; not sure what to expect for the rest of the specialization then, although I've read very positive results. Therefore, I will continue.

by Leandro S

2017年10月10日

The material is good, the subject is interesting, the slides are ok, but the audio is suboptimal. In addition, there could be slightly more interaction (I mean the lecturer recording videos with him doing things at git bash, for example). This course is a simple and good preparation for the further courses on the Johns Hopkins Univerity Data Science track at Coursera.