Chevron Left
Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization に戻る

deeplearning.ai による Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization の受講者のレビューおよびフィードバック

4.9
60,692件の評価
7,031件のレビュー

コースについて

In the second course of the Deep Learning Specialization, you will open the deep learning black box to understand the processes that drive performance and generate good results systematically. By the end, you will learn the best practices to train and develop test sets and analyze bias/variance for building deep learning applications; be able to use standard neural network techniques such as initialization, L2 and dropout regularization, hyperparameter tuning, batch normalization, and gradient checking; implement and apply a variety of optimization algorithms, such as mini-batch gradient descent, Momentum, RMSprop and Adam, and check for their convergence; and implement a neural network in TensorFlow. The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

人気のレビュー

JS

2021年4月4日

Fantastic course and although it guides you through the course (and may feel less challenging to some) it provides all the building blocks for you to latter apply them to your own interesting project.

NA

2020年1月13日

After completion of this course I know which values to look at if my ML model is not performing up to the task. It is a detailed but not too complicated course to understand the parameters used by ML.

フィルター:

Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization: 6901 - 6925 / 6,977 レビュー

by Rishab K

2020年4月17日

good course to learn, but more assignments should be introduce n week3

by Rajat K S

2020年1月11日

Most of the solutions to the assignment were written in instructions.

by Ganesan G

2017年12月28日

I am not getting to see the programming exercises that i have done :(

by Jonghyun K

2020年4月25日

voice was too small compared to noises made by clothes and others.

by Aastha S

2021年7月14日

More explanations required for functions used in tensorflow lab

by FREDERIC T

2018年5月13日

Good courses, the sound quality is very poor (high tone noise).

by Suhas M

2019年1月20日

Interface for evaluating is not great and assignments are easy

by Alex I E

2017年9月4日

The Tensorflow part should have started sooner in the course.

by Aloys N

2019年7月1日

We could have more guidance on setting a tensorflow model

by HAMM,CHRISTOPHER A

2018年4月30日

Lots of theory and not enough practical implementation.

by Stefan S

2020年9月22日

Content starts to feel old, but still interesting.

by Hasnaa T

2020年2月10日

the circulum was some hard and over detailed

by luca m

2020年5月5日

I would have loved to have a session on TF2

by Kenneth C V

2019年8月29日

Course is a bit complex due to the subject

by Kartheek

2019年2月1日

week 3 topics would have been a bit better

by Tushar B

2018年6月12日

Assignments vs lecture, difference is huge

by Aashita G

2020年6月1日

fast paced not enough emphasis on topics

by Amod J

2018年3月18日

Want to download my own work but cannot.

by Rachana O

2020年8月17日

Can be done in more interesting manner.

by Mark L

2020年7月16日

great superficial intro to the content

by Jérôme C

2018年10月14日

Need more training on Tensorflow, imho

by Juan J D

2017年9月11日

tensorflow subject was to superficial

by Weeha G

2021年7月25日

Assignment of week 3 is toooo brief.

by SATHVIK S

2020年7月26日

Can dive deeper into the mathematics

by Trevor M

2020年11月23日

good lectures terrible exercises