このコースについて
5,030 最近の表示

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

約17時間で修了

推奨:9 hours/week...

英語

字幕:英語

学習内容

  • Check

    Project structure of interactive Python data applications

  • Check

    Python web server frameworks: (e.g.) Flask, Django, Dash

  • Check

    Best practices around deploying ML models and monitoring performance

  • Check

    Deployment scripts, serializing models, APIs

習得するスキル

Python ProgrammingBig Data ProductsRecommender Systems

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

約17時間で修了

推奨:9 hours/week...

英語

字幕:英語

シラバス - 本コースの学習内容

1
2時間で修了

Introduction

Welcome to the first week of Deploying Machine Learning Models! We will go over the syllabus, download all course materials, and get your system up and running for the course. We will also introduce the basics of recommender systems and differentiate it from other types of machine learning

...
5件のビデオ (合計54分), 3 readings, 3 quizzes
5件のビデオ
Recommender Systems versus Other Forms of Supervised Learning7 分
Collaborative Filtering-Based Recommendation19 分
Latent Factor Models (Part 1)11 分
Latent Factor Models (Part 2)11 分
3件の学習用教材
Syllabus10 分
Course Materials10 分
Setting Up Your System10 分
3の練習問題
Review: Recommender Systems4 分
Review: Introduction to Latent Factor Models4 分
Recommender Systems and Latent Factor Models20 分
2
1時間で修了

Implementing Recommender Systems

This week, we will learn how to implement a similarity-based recommender, returning predictions similar to an user's given item. We will cover how to optimize these models based on gradient descent and Jaccard similarity.

...
4件のビデオ (合計36分), 3 quizzes
4件のビデオ
Similarity-Based Recommender for Rating Prediction7 分
Implementing a Latent Factor Model (Part 1)11 分
Implementing a Latent Factor Model (Part 2)6 分
3の練習問題
Review: Similarity-Based Recommenders5 分
Review: Implementing Latent Factor Models4 分
Implementing Recommender Systems10 分
3
1時間で修了

Deploying Recommender Systems

This week, we will learn about Python web server frameworks and the overall structure of interactive Python data applications. We will also cover some tips for best practices on deploying and monitoring your applications.

...
3件のビデオ (合計17分), 1 reading, 2 quizzes
3件のビデオ
Intro to Django5 分
Flask7 分
1件の学習用教材
Setting up Your Workspace with Docker: Django10 分
2の練習問題
Review: Flask, Django, Dash30 分
Deploying Recommender Systems5 分
4
2時間で修了

Project 4: Recommender System

For this final project, you will build a recommender system of your own. Find a dataset, clean it, and create a predictive system from the dataset. This will help prepare you for the upcoming capstone, where you will harness your skills from all courses of this specialization into one single project!

...
2 readings, 1 quiz
2件の学習用教材
Project Description10 分
How to Find a Dataset10 分

講師

Avatar

Ilkay Altintas

Chief Data Science Officer
San Diego Supercomputer Center
Avatar

Julian McAuley

Assistant Professor
Computer Science

カリフォルニア大学サンディエゴ校について

UC San Diego is an academic powerhouse and economic engine, recognized as one of the top 10 public universities by U.S. News and World Report. Innovation is central to who we are and what we do. Here, students learn that knowledge isn't just acquired in the classroom—life is their laboratory....

Python Data Products for Predictive Analyticsの専門講座について

Python data products are powering the AI revolution. Top companies like Google, Facebook, and Netflix use predictive analytics to improve the products and services we use every day. Take your Python skills to the next level and learn to make accurate predictions with data-driven systems and deploy machine learning models with this four-course Specialization from UC San Diego. This Specialization is for learners who are proficient with the basics of Python. You’ll start by creating your first data strategy. You’ll also develop statistical models, devise data-driven workflows, and learn to make meaningful predictions for a wide-range of business and research purposes. Finally, you’ll use design thinking methodology and data science techniques to extract insights from a wide range of data sources. This is your chance to master one of the technology industry’s most in-demand skills. Python Data Products for Predictive Analytics is taught by Professor Ilkay Altintas, Ph.D. and Julian McAuley. Dr. Alintas is a prominent figure in the data science community and the designer of the highly-popular Big Data Specialization on Coursera. She has helped educate hundreds of thousands of learners on how to unlock value from massive datasets....
Python Data Products for Predictive Analytics

よくある質問

  • 修了証に登録すると、すべてのビデオ、テスト、およびプログラミング課題(該当する場合)にアクセスできます。ピアレビュー課題は、セッションが開始してからのみ、提出およびレビューできます。購入せずにコースを検討することを選択する場合、特定の課題にアクセスすることはできません。

  • コースに登録する際、専門講座のすべてのコースにアクセスできます。コースの完了時には修了証を取得できます。電子修了証が成果のページに追加され、そこから修了証を印刷したり、LinkedInのプロフィールに追加したりできます。コースの内容の閲覧のみを希望する場合は、無料でコースを聴講できます。

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。