このコースについて

19,635 最近の表示

受講生の就業成果

20%

コース終了後に新しいキャリアをスタートした

18%

コースが具体的なキャリアアップにつながった
共有できる証明書
修了時に証明書を取得
100%オンライン
自分のスケジュールですぐに学習を始めてください。
柔軟性のある期限
スケジュールに従って期限をリセットします。
中級レベル
約18時間で修了
英語
字幕:英語

受講生の就業成果

20%

コース終了後に新しいキャリアをスタートした

18%

コースが具体的なキャリアアップにつながった
共有できる証明書
修了時に証明書を取得
100%オンライン
自分のスケジュールですぐに学習を始めてください。
柔軟性のある期限
スケジュールに従って期限をリセットします。
中級レベル
約18時間で修了
英語
字幕:英語

講師

提供:

New York University ロゴ

New York University

シラバス - 本コースの学習内容

1

1

5時間で修了

Fundamentals of Supervised Learning in Finance

5時間で修了
9件のビデオ (合計71分), 4 readings, 1 quiz
9件のビデオ
Introduction to Fundamentals of Machine Learning in Finance4 分
Support Vector Machines, Part 18 分
Support Vector Machines, Part 27 分
SVM. The Kernel Trick8 分
Example: SVM for Prediction of Credit Spreads9 分
Tree Methods. CART Trees9 分
Tree Methods: Random Forests8 分
Tree Methods: Boosting9 分
4件の学習用教材
A. Smola and B. Scholkopf, “A Tutorial on Support Vector Regression”, Statistics and Computing, vol. 14, pp. 199-229, 200415 分
A. Geron, “Hands-On Machine Learning with Scikit-Learn and TensorFlow”, Chapters 6 & 730 分
K. Murphy, “Machine Learning: A Probabilistic Perspective”, MIT Press, 2009, Chapter 16.415 分
Jupyter Notebook FAQ10 分
2

2

4時間で修了

Core Concepts of Unsupervised Learning, PCA & Dimensionality Reduction

4時間で修了
6件のビデオ (合計54分), 3 readings, 1 quiz
6件のビデオ
PCA for Stock Returns, Part 14 分
PCA for Stock Returns, Part 29 分
Dimension Reduction with PCA9 分
Dimension Reduction with tSNE11 分
Dimension Reduction with Autoencoders9 分
3件の学習用教材
C. Bishop, “Pattern Recognition and Machine Learning”, Chapter 12.115 分
A. Geron, “Hands-On ML”, Chapters 8 & 1530 分
Jupyter Notebook FAQ10 分
3

3

4時間で修了

Data Visualization & Clustering

4時間で修了
7件のビデオ (合計50分), 3 readings, 1 quiz
7件のビデオ
UL. K-clustering8 分
UL. K-means Neural Algorithm7 分
UL. Hierarchical Clustering Algorithms10 分
UL. Clustering and Estimation of Equity Correlation Matrix5 分
UL. Minimum Spanning Trees, Kruskal Algorithm6 分
UL. Probabilistic Clustering6 分
3件の学習用教材
C. Bishop, “Pattern Recognition and Machine Learning”, Clustering and EM: Chapter 930 分
G. Bonanno et. al. “Networks of equities in financial markets”, The European Physical Journal B, vol. 38, issue 2, pp. 363-371 (2004)15 分
Jupyter Notebook FAQ10 分
4

4

5時間で修了

Sequence Modeling and Reinforcement Learning

5時間で修了
11件のビデオ (合計101分), 3 readings, 1 quiz
11件のビデオ
Sequence Modeling10 分
SM. Latent Variables for Sequences8 分
SM. State-Space Models9 分
SM. Hidden Markov Models9 分
Neural Architecture for Sequential Data12 分
RL. Introduction8 分
RL. Core Ideas7 分
Markov Decision Process and RL8 分
RL. Bellman Equation6 分
RL and Inverse Reinforcement Learning11 分
3件の学習用教材
C. Bishop, “Pattern Recognition and Machine Learning”, Chapter 1310 分
S. Marsland, “Machine Learning: an Algorithmic Perspective” (Chapman & Hall 2009), Chapter 1315 分
Jupyter Notebook FAQ10 分

レビュー

FUNDAMENTALS OF MACHINE LEARNING IN FINANCE からの人気レビュー

すべてのレビューを見る

Machine Learning and Reinforcement Learning in Finance専門講座について

The main goal of this specialization is to provide the knowledge and practical skills necessary to develop a strong foundation on core paradigms and algorithms of machine learning (ML), with a particular focus on applications of ML to various practical problems in Finance. The specialization aims at helping students to be able to solve practical ML-amenable problems that they may encounter in real life that include: (1) mapping the problem on a general landscape of available ML methods, (2) choosing particular ML approach(es) that would be most appropriate for resolving the problem, and (3) successfully implementing a solution, and assessing its performance. The specialization is designed for three categories of students: · Practitioners working at financial institutions such as banks, asset management firms or hedge funds · Individuals interested in applications of ML for personal day trading · Current full-time students pursuing a degree in Finance, Statistics, Computer Science, Mathematics, Physics, Engineering or other related disciplines who want to learn about practical applications of ML in Finance. The modules can also be taken individually to improve relevant skills in a particular area of applications of ML to finance....
Machine Learning and Reinforcement Learning in Finance

よくある質問

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。