このコースについて
18,515

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

上級レベル

約49時間で修了

推奨:12 weeks of study, 4-6 hours per week...

英語

字幕:英語

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

上級レベル

約49時間で修了

推奨:12 weeks of study, 4-6 hours per week...

英語

字幕:英語

シラバス - 本コースの学習内容

1
3時間で修了

General Covariance

To start with, we recall the basic notions of the Special Theory of Relativity. We explain that Minkwoskian coordinates in flat space-time correspond to inertial observers. Then we continue with transformations to non-inertial reference systems in flat space-time. We show that non-inertial observers correspond to curved coordinate systems in flat space-time. In particular, we describe in grate details Rindler coordinates that correspond to eternally homogeneously accelerating observers. This shows that our Nature allows many different types of metrics, not necessarily coincident with the Euclidian or Minkwoskain ones. We explain what means general covariance. We end up this module with the derivation of the geodesic equation for a general metric from the least action principle. In this equation we define the Christoffel symbols....
7件のビデオ (合計75分), 1 quiz
7件のビデオ
General covariance12 分
Сonstant linear acceleration16 分
Transition to the homogeneously accelerating reference frame (or system) in Minkowski space–time8 分
Transition to the homogeneously accelerating reference frame in Minkowski space–time (part 2)13 分
Geodesic equation8 分
Christoffel symbols14 分
2
4時間で修了

Covariant differential and Riemann tensor

We start with the definition of what is tensor in a general curved space-time. Then we define what is connection, parallel transport and covariant differential. We show that for Riemannian manifolds connection coincides with the Christoffel symbols and geodesic equations acquire a clear geometric meaning. We end up with the definition of the Riemann tensor and the description of its properties. We explain how Riemann tensor allows to distinguish flat space-time in curved coordinates from curved space-times. For this module we provide complementary video to help students to recall properties of tensors in flat space-time. ...
9件のビデオ (合計124分), 1 quiz
9件のビデオ
Tensors9 分
Covariant differentiation15 分
Parallel transport10 分
Covariant differentiation(part 2)9 分
Locally Minkowskian Reference System (LMRS)16 分
Curvature or Riemann tensor15 分
Properties of Riemann tensor13 分
Tensors in flat space-time(part 1)21 分
Tensors in flat space-time(part 2)13 分
3
3時間で修了

Einstein-Hilbert action and Einstein equations

We start with the explanation of how one can define Einstein equations from fundamental principles. Such as general covariance, least action principle and the proper choice of dynamical variables. Namely, the role of the latter in the General Theory of Relativity is played by the metric tensor of space-time. Then we derive the Einstein equations from the least action principle applied to the Einstein-Hilbert action. Also we define the energy-momentum tensor for matter and show that it obeys a conservation law. We describe the basic generic properties of the Einstein equations. We end up this module with some examples of energy-momentum tensors for different sorts of matter fields or bodies and particles.To help understanding this module we provide complementary video with the explanation of the least action principle in the simplest case of the scalar field in flat two-dimensional space-time....
6件のビデオ (合計86分), 1 quiz
6件のビデオ
Einstein equations19 分
Matter energy–momentum (or stress-energy) tensor15 分
Examples of matter actions17 分
The least action (or minimal action) principle (part 1)11 分
The least action principle (part 2)12 分
4
3時間で修了

Schwarzschild solution

With this module we start our study of the black hole type solutions. We explain how to solve the Einstein equations in the simplest settings. We find perhaps the most famous solution of these equations, which is referred to as the Schwarzschild black hole. We formulate the Birkhoff theorem. We end this module with the description of some properties of this Schwarzschild solution. We provide different types of coordinate systems for such a curved space-time. ...
5件のビデオ (合計55分), 1 quiz
5件のビデオ
Schwarzschild solution(part 2)17 分
Gravitational radius6 分
Schwarzschild coordinates7 分
Eddington–Finkelstein coordinates11 分
4.6
33件のレビューChevron Right

人気のレビュー

by PPSep 24th 2017

Best Course for Physics Enthusiasts. It is a must for those who are interested in theoretical or mathematical physics. I really enjoyed the course though it was tough.

by VUFeb 2nd 2017

Excellent course, and quite intensive mathematically. One will be well placed for a graduate level course on General relativity upon completing this.

講師

Avatar

Emil Akhmedov

Associate Professor
Faculty of Mathematics

ロシア国立研究大学経済高等学院(National Research University Higher School of Economics)について

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more. Learn more on www.hse.ru...

よくある質問

  • 修了証に登録すると、すべてのビデオ、テスト、およびプログラミング課題(該当する場合)にアクセスできます。ピアレビュー課題は、セッションが開始してからのみ、提出およびレビューできます。購入せずにコースを検討することを選択する場合、特定の課題にアクセスすることはできません。

  • 修了証を購入する際、コースのすべての教材(採点課題を含む)にアクセスできます。コースを完了すると、電子修了証が成果のページに追加されます。そこから修了証を印刷したり、LinkedInのプロフィールに追加したりできます。コースの内容の閲覧のみを希望する場合は、無料でコースを聴講できます。

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。