When working in the data science field you will definitely become acquainted with the R language and the role it plays in data analysis. This course introduces you to the basics of the R language such as data types, techniques for manipulation, and how to implement fundamental programming tasks.
提供:


このコースについて
学習内容
Manipulate primitive data types in the R programming language using RStudio or Jupyter Notebooks.
Control program flow with conditions and loops, write functions, perform character string operations, write regular expressions, handle errors.
Construct and manipulate R data structures, including vectors, factors, lists, and data frames.
Read, write, and save data files and scrape web pages using R.
習得するスキル
- Data Science
- R Programming
提供:

IBM
IBM is the global leader in business transformation through an open hybrid cloud platform and AI, serving clients in more than 170 countries around the world. Today 47 of the Fortune 50 Companies rely on the IBM Cloud to run their business, and IBM Watson enterprise AI is hard at work in more than 30,000 engagements. IBM is also one of the world’s most vital corporate research organizations, with 28 consecutive years of patent leadership. Above all, guided by principles for trust and transparency and support for a more inclusive society, IBM is committed to being a responsible technology innovator and a force for good in the world.
シラバス - 本コースの学習内容
R Basics
Regardless of the programming language you use, all share some commonalities. For example, you’ll likely need to perform basic operations on different data types, like applying mathematical equations to numeric data. You’ll also need an environment in which to write your code, anbbd most modern integrated development environments (or IDEs) provide features that make writing code easier, like syntax checking, color coding, and integrated help. This module introduces you to the R language, its common data types, and techniques for manipulating them. You’ll also learn about the role of the R interpreter and how it transforms code into executable objects. Finally, you’ll be introduced to two of the most common IDEs for R development: RStudio and Jupyter Notebook.
Common Data Structures
The R language supports many types of data structures that you can use to organize and store values in your code, including vectors, factors, lists, arrays, matrices, and data frames. Each data structure type serves a specific purpose and can contain specific kinds of data. So, it’s important to understand the differences between them so you can make the right choice based on your scenario.
R Programming Fundamentals
As with most programming languages, R supports coding features that you can use to control the flow of program execution, define functions that can perform specific tasks, work with common data types, like strings and dates, and make your code more robust by intercepting likely errors and handling them before they interrupt the execution of your code.
Working with Data
Data is everywhere! The data you need to analyze may come from a traditional database, but it may also come from a variety of different sources and systems, and it may come to you in one or more formats. For example, your data might be in text, Excel, .JSON, or .XML files. Or it may not be stored in a file at all, but instead lives on the pages of a website. How will you take all these different file formats and load them into your R working environment?
レビュー
- 5 stars68.23%
- 4 stars21.17%
- 3 stars2.94%
- 2 stars1.17%
- 1 star6.47%
INTRODUCTION TO R PROGRAMMING FOR DATA SCIENCE からの人気レビュー
Iam new beginner to the R-programming. It was taught very well to make me understand R basic skills. Thank you Coursea.
Excellent introductory course with very useful hands-on lab sessions.
Exceptional course for beginners in R programming and data science enthusiasts. Highly recommended!
Challenging but quite comprehensive. Its the best course on R.
よくある質問
いつ講座や課題にアクセスできるようになりますか?
この修了証をサブスクライブすると何を行うことができるようになりますか?
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。