このコースについて
6,587 最近の表示

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

中級レベル

Python programming (beginners)

Investment theory (recommended)

Statistics (recommended)

約11時間で修了

推奨:4 weeks of study, 2 hours per week...

英語

字幕:英語

学習内容

  • Check

    Learn what alternative data is and how it is used in financial market applications. 

  • Check

    Become immersed in current academic and practitioner state-of-the-art research pertaining to alternative data applications.

  • Check

    Perform data analysis of real-world alternative datasets using Python.

  • Check

    Gain an understanding and hands-on experience in data analytics, visualization and quantitative modeling applied to alternative data in finance

習得するスキル

Advanced vizualisationBasics of consuption-based alternative dataText mining methodologiesWeb-scritpting tools

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

中級レベル

Python programming (beginners)

Investment theory (recommended)

Statistics (recommended)

約11時間で修了

推奨:4 weeks of study, 2 hours per week...

英語

字幕:英語

シラバス - 本コースの学習内容

1
4時間で修了

Consumption

10件のビデオ (合計74分), 3 readings, 1 quiz
10件のビデオ
What is consumption data?8 分
Geolocation and foot-traffic5 分
Lab session: Introduction to the Uber Dataset6 分
Lab session: Points of Interest5 分
Lab session: Mapping Data with Folium9 分
Lab session: Testing Seasonality11 分
Application: Consumption data and earning surprises7 分
Application:Consumption-based proxies for private information and managers behavior7 分
Application: Additional applications of consumption data7 分
3件の学習用教材
Material at your disposal5 分
Additional resources on the interest of real-time corporate sales'measures1 時間
Additional resources on Predicting Performance using Consumer Big Data1 時間
1の練習問題
Graded Quiz on Consumption30 分
2
2時間で修了

Textual Analysis for Financial Applications

8件のビデオ (合計75分), 1 reading, 1 quiz
8件のビデオ
Introduction to textual analysis3 分
Processing text into vectors12 分
Normalizing textual data5 分
Lab session: Introduction to Webscraping11 分
Lab session: Applied Text Data Processing11 分
Lab session: Company Distances and Industry Distances15 分
Application: applying similarity analysis on corporate filings to predict returns9 分
1件の学習用教材
Additional resources on textual analysis for financial applications1 時間
1の練習問題
Graded Quiz on Textual Analysis for Financial Applications
3
3時間で修了

Processing Corporate Filings

8件のビデオ (合計69分), 2 readings, 1 quiz
8件のビデオ
Lab session: Working with 10-K Data7 分
Lab session: Applications of TF-IDF11 分
Lab session: Risk Analysis9 分
Lab session: Working with 13-F Data10 分
Lab session: Comparing Holding Similarities11 分
Application: network centrality, competition links and stock returns8 分
Application: Using location data to measure home bias to predict returns4 分
2件の学習用教材
Additional resources30 分
Additional resources on processing corporate fillings1 時間 15 分
1の練習問題
Graded Quiz on Processing Corporate Filings
4
6時間で修了

Using Media-Derived Data

7件のビデオ (合計62分), 3 readings, 1 quiz
7件のビデオ
Sentiment Analysis6 分
Lab session: Twitter Dataset Introduction10 分
Lab session: Network Visualization4 分
Lab session: Replicating PageRank12 分
Lab session: Applied Sentiment Analysis7 分
Application: Using media to predict financial market variables10 分
3件の学習用教材
Additional resources1 時間
Additional resources1 時間 15 分
Additional resources on using media derived-data2 時間 30 分
1の練習問題
Graded Quiz on Using Media-Derived Data

講師

Avatar

Gideon OZIK

Founder and managing partner of MKT MediaStats
Data science and financial economics
Avatar

Sean McOwen

Quantitative Analyst
Finance

EDHEC Business Schoolについて

Founded in 1906, EDHEC is now one of Europe’s top 15 business schools . Based in Lille, Nice, Paris, London and Singapore, and counting over 90 nationalities on its campuses, EDHEC is a fully international school directly connected to the business world. With over 40,000 graduates in 120 countries, it trains committed managers capable of dealing with the challenges of a fast-evolving world. Harnessing its core values of excellence, innovation and entrepreneurial spirit, EDHEC has developed a strategic model founded on research of true practical use to society, businesses and students, and which is particularly evident in the work of EDHEC-Risk Institute and Scientific Beta. The School functions as a genuine laboratory of ideas and plays a pioneering role in the field of digital education via EDHEC Online, the first fully online degree-level training platform. These various components make EDHEC a centre of knowledge, experience and diversity, geared to preparing new generations of managers to excel in a world subject to transformational change. EDHEC in figures: 8,600 students in academic education, 19 degree programmes ranging from bachelor to PhD level, 184 professors and researchers, 11 specialist research centres. ...

Investment Management with Python and Machine Learning専門講座について

The Data Science and Machine Learning for Asset Management Specialization has been designed to deliver a broad and comprehensive introduction to modern methods in Investment Management, with a particular emphasis on the use of data science and machine learning techniques to improve investment decisions.By the end of this specialization, you will have acquired the tools required for making sound investment decisions, with an emphasis not only on the foundational theory and underlying concepts, but also on practical applications and implementation. Instead of merely explaining the science, we help you build on that foundation in a practical manner, with an emphasis on the hands-on implementation of those ideas in the Python programming language through a series of dedicated lab sessions....
Investment Management with Python and Machine Learning

よくある質問

  • 修了証に登録すると、すべてのビデオ、テスト、およびプログラミング課題(該当する場合)にアクセスできます。ピアレビュー課題は、セッションが開始してからのみ、提出およびレビューできます。購入せずにコースを検討することを選択する場合、特定の課題にアクセスすることはできません。

  • コースに登録する際、専門講座のすべてのコースにアクセスできます。コースの完了時には修了証を取得できます。電子修了証が成果のページに追加され、そこから修了証を印刷したり、LinkedInのプロフィールに追加したりできます。コースの内容の閲覧のみを希望する場合は、無料でコースを聴講できます。

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。