Chevron Left
Structuring Machine Learning Projects に戻る

deeplearning.ai による Structuring Machine Learning Projects の受講者のレビューおよびフィードバック

4.8
48,325件の評価
5,551件のレビュー

コースについて

In the third course of the Deep Learning Specialization, you will learn how to build a successful machine learning project and get to practice decision-making as a machine learning project leader. By the end, you will be able to diagnose errors in a machine learning system; prioritize strategies for reducing errors; understand complex ML settings, such as mismatched training/test sets, and comparing to and/or surpassing human-level performance; and apply end-to-end learning, transfer learning, and multi-task learning. This is also a standalone course for learners who have basic machine learning knowledge. This course draws on Andrew Ng’s experience building and shipping many deep learning products. If you aspire to become a technical leader who can set the direction for an AI team, this course provides the "industry experience" that you might otherwise get only after years of ML work experience. The Deep Learning Specialization is our foundational program that will help you understand the capabilities, challenges, and consequences of deep learning and prepare you to participate in the development of leading-edge AI technology. It provides a pathway for you to gain the knowledge and skills to apply machine learning to your work, level up your technical career, and take the definitive step in the world of AI....

人気のレビュー

AM

2017年11月22日

I learned so many things in this module. I learned that how to do error analysys and different kind of the learning techniques. Thanks Professor Andrew Ng to provide such a valuable and updated stuff.

TG

2020年12月1日

I learned so many things in this module. I learned that how to do error analysis and different kind of the learning techniques. Thanks Professor Andrew Ng to provide such a valuable and updated stuff.

フィルター:

Structuring Machine Learning Projects: 201 - 225 / 5,517 レビュー

by Mirna M A

2021年1月6日

the best course course so far in terms of (error analysis, how to deal with training/ dev/ test sets and what the symmetry of distribution means, how to split data set in the best way, how to be able to use an algorithm again in another deep learning project, how it's important to correct the incorrectly labeled data set, etc )

by Hermes R S A

2018年3月7日

Consider this a course on best practices. I found fundamental advises on how to best carry a ML project from scratch, regarding the first model you should choose, how to perform on different scenarios, how to choose systematically your train/dev/test set and so on. The project simulator is a must, I wish they put more of those.

by Shazib S

2020年10月8日

Really really good course. I never knew about the intricacies of error analysis that is done in ML/DL projects. This was a very insightful course. Would see the lectures again if I need to (which I will). Nevertheless, amazing course. The content is explained in a step by step and appropriate fashion for even a newbie like me.

by Ahmet

2019年2月24日

The teaching in this course is so invaluable for interpreting the results. Now, I believe I can understand my models' accuracy based on professors teaching. The professor teaching contains unique knowledge and experience, where you can't reach via the internet, library or asking your university professors. Thank you, Prof. Ng.

by Shehryar M K K

2017年10月22日

I think this course was very valuable in teaching insights about how to think about and formulate ML/DL problems. The case study quizzes were really good and made you think. I hope coursera expands on these case study quizzes for future version of this course as well as introduce them into other courses of this specialization.

by Alessio G

2017年8月16日

This course is a summary of Andrew's experience. I've yet listened this nuts and bolts from Andrew speech(you can find it on youtube) but there are some precious advice that are so much valuable. I'll recommend this course to everyone who want to start a carer in DL. Big thanks to Andrew, the Deeplearning.ai team and Coursera.

by Dejan Đ

2021年4月15日

Plenty of wisdom shared by Dr. Ng here, presented in a very digestible and actionable fashion; can't wait to apply to approaches suggested to my own projects. These kinds of courses are golden, can't find such practical knowledge in ordinary textbooks. Thank you for the course, can't wait to continue with the specialization!

by MBOUOPDA M F

2020年7月11日

This course taught me recipes about conducting a machine learning project. I'm now more confident about being a machine learning project lead. The assignments are interesting because they are case studies of real situations, where decisions need to be taken in order to iterate and converge to a better machine learning model.

by ankit d

2019年9月9日

This course really help me to understand exactly how to make decision to distribute the data sets, what to do with the new data set, how to examine the error, how to use previous model as a transfer model for other classification, what is multi-tasking and many more

Thank you for your support and sharing of your knowledge

:)

by Arvind N

2017年8月12日

This course was most useful as Andrew explains practical engineering challenges and valuable tips to overcome them!

As a technology architect, I am more interested in predictable, guaranteed results and can guide my my ML engineering team to make the right choices in given real-world uncertainties and engineering challenges.

by Rahuldeb D

2018年7月29日

This course provides us an overview of the errors we have to encounter while solving a machine learning problem and shows us a clear direction of overcoming those. Though the contents are not mathematical but these information will help us to deal with machine learning projects in efficient way. I really liked this course.

by Wei-Chuang C

2017年8月19日

The course is very practical and also leads you to learn the real challenge you will encounter while working on machine learning project. While it's easy to follow as the previous courses, you need to think more strategically. I would recommend bringing an idea or a project you are planning and apply what you learned here.

by ANIKET A G

2020年7月17日

The course really streamlines and puts forth a structured approach to go for delivering a machine learning solution to a problem. It helps to complete my project in 2-3 months instead of a year that sometimes some of my colleagues take. They need to look at this course. Also the interview with Ruslan was very informative.

by Azamat K

2019年8月17日

Really liked this course, especially the case studies, where the task is clear and possible scenarios are explained. Have to response in the most promising way using the knowledge obtained during the previous 2 courses. Really appreciate this experience. Only wish is to have more case studies in the other courses as well.

by Bradley W

2017年12月14日

Great course. The pragmatic insights were invaluable. I think addressing problems such as missing input data and data preparation would help. I also think a programming assignment that explores these ideas would help. You could take the sign language number exercise from week 2 and explore some of the ideas this week.

by Gopinath

2020年1月16日

I can confidently say that this course has content which is only unique to this course. To my knowledge no other course has topics like Avoidable bias, Bayes optimal error, Error analysis and emphasis on train, dev & test set data distribution mismatch. This course is definitely a must for any Deep learning practitioner.

by deepak v

2018年1月6日

Looking at the title of this course I predicted that it will be regarding to teach me how to organise the source code files of ML project and more specifically how to build a ML project and components of deep learning project but it was all about DEBUGGING ml project so for me this was in off beat course from its title.

by Tony H

2017年8月30日

Extremely useful, practical techniques for deep learning projects. I feel much more able to construct my own neural networks, diagnose and solve issues with them after following this course. Professor Ng is a gifted teacher. His style is careful, methodical and never less than very well prepared and deeply enlightening.

by Ayan G

2020年4月20日

Its really nice to get the valuable insight of managing an AI project, this course not only thought us about deep learning, but also how to manage them efficient and take smart decision. I like the concept of Transfer learning as it can same a lot of efforts and time to build an system for complex. Thank you very much.

by Kwan T

2017年10月1日

I am very lucky to be able to learn from Andrew the DOs and DON'Ts of how to develop a successful practical deep neural network for real applications. It would take a machine learning developer many years of working experience to acquire any one of the topics that Andrew articulated in this course. Thank you so much!!!

by Adam F

2021年11月1日

I completed the entire specialization and having nothing but good things to say. Highly recommend it! Lectures are engaging, and Andrew does a fantastic job explaining some very complex topics. Programming assignments are challenging in a good way. You’ll really feel like you’ve learned a lot by the time you’re done.

by Konstantinos K

2020年12月31日

The course is great. It tackles a lot of problems regarding strategic decision making and at the same time important concepts such as human-level error, avoidable bias, transfer learning, end-to-end deep learning and others are being taught. The questions/exercises really test the core concepts that are being taught!

by Mark Z

2019年6月11日

I've decided to take this course after seeing its feedback from other people and the comment which got me was the following: "This course is could be summarized as a machine learning master giving useful advice". I think it perfectly describes the course's content. This course is definitely worth investing time into.

by Dunitt M

2019年2月10日

Excelente curso, muy recomendado para quienes tienen una idea de Deep Learning pero con frecuencia se encuentran en situación que no saben cómo afrontar o cuál camino intentar primero. El conjunto de habilidades impartidas aquí no te harán un mejor programador, pero te ahorraran muchas horas de esfuerzo innecesario.

by Gaurav K

2017年9月7日

Amazing tips shared for structuring machine learning projects, which were ignored in most of the other ML books. Building a model is one thing, but tuning it to make it work better in the real world is more important which this course focuses.

Thanks Prof. Andrew Ng for the consistent support of spreading knowledge!