Chevron Left
Математика и Python для анализа данных に戻る

モスクワ物理工科大学(Moscow Institute of Physics and Technology) による Математика и Python для анализа данных の受講者のレビューおよびフィードバック

4.8
5,459件の評価
926件のレビュー

コースについて

Анализ данных и машинное обучение существенно опираются на результаты из математического анализа, линейной алгебры, методов оптимизации, теории вероятностей. Без фундаментальных знаний по этим наукам невозможно понимать, как устроены методы анализа данных. Задача этого курса — сформировать такой фундамент. Мы обойдёмся без сложных формул и доказательств и сделаем упор на интерпретации и понимании смысла математических понятий и объектов. Для успешного применения методов анализа данных нужно уметь программировать. Фактическим стандартом для этого в наши дни является язык Python. В данном курсе мы предлагаем познакомиться с его синтаксисом, а также научиться работать с его основными библиотеками, полезными для анализа данных, например, NumPy, SciPy, Matplotlib и Pandas. Видео курса разработаны на Python 2. Задания и ноутбуки к ним адаптированы к Python 3....

人気のレビュー

GD
2018年8月8日

Лучший вводный курс, который я видел. Есть мелкие огрехи в изложении математической части, но это ерунда по сравнению с четкостью и полнотой изложения программистской части и обилием примеров. Спасибо

KA
2016年2月15日

Прошел много курсов по Data Science, этот курс не разочаровал. Подается в лучших западных традициях. Неформально объясняется материал, много примеров. Надеюсь, и дальше специализация не подкачает.

フィルター:

Математика и Python для анализа данных: 76 - 100 / 893 レビュー

by Daria P

2020年5月11日

Очень мало примеров и слишком сложные задачи на программирование без каких-либо пояснений откуда брать информацию и как выполнять задания

by Artur P

2020年2月11日

Увидел, что курс построен на питоне 2 и, со спокойной душой, отписался. Почти часовое введение с рекламой тоже не особо интригует

by Evgeni N

2017年12月19日

Без примеров, без разборов, без нормального объяснения, дорого, ограниченное время на прохождение.

by Sergei K

2020年4月5日

Старая среда разработки , никак не установить ее , с старой задания невозможно воспринимать

by Andriy S

2020年12月14日

Хороший, интересный курс! В целом хорошая работа преподавателей. Но нельзя не сделать несколько замечаний. 1) Все же курс не для "начинающих", как он позиционируется. Хорошо бы начинающему курс иметь некоторый опыт программирования и пройти хотя бы самый простой курс Питона, ну скажем, я б рекомендовал классический №67 на Степике. Лично у меня был уж не такой малый опыт в Питоне, потому никаких трудностей не было, однако тот Питон, что на этом курсе, из цикла "галопом по Европам", и притом сильно быстрым галопом, пропуская многое. 2) В принципе тоже можно повторить и про требуемые основы анализа и теории вероятности и мат. статистики. 3) Что вообще характерно для он-лайн курсов, особенно с попыткой охватить некую обширную тему - как у этого курса! - то этот самый галоп с пропуском многих полезных подробностей и особенностей. Потому не стоит рассчитывать, что тут вас сделают специалистом - ну где-то покажут дорогу, направления, дадут опору и толчок к более глубокому изучению того, что надо. 4) Вывод. Лично для меня курс был подходящим и в целом несложным по заданиям. Что там будет у других - не скажу, многое зависит от предыдущей подготовки и опыта.

by Petr K

2018年7月22日

This is a Russian course so it'd be better if I continue in Russian to :)

Цель этого курса - подготовить к непосредственно началу изучения Машинного Обучения.

В отношении меня цель была выполнена - я восполнил пробелы в тервере, матстате и numpy+pandas. Остальные темы знал довольно хорошо, т.к. уже что-то повторял + прошел курс от Andrew Ng. Из-за этого скорость прохождения была неравномерной - это нормально. Так что будьте тоже готовы, что какие-то темы пролетят очень легко и быстро, а на каких-то чуть подзависнете.

Очень понравился темп и глубина изучения. Темп очень спокойный, темы специально чередуются. Изучение довольно поверхностное, но при этом нужные слова упоминаются, оставляя возможность доизучать самому. С одной стороны курс не перегружается, с другой - обозначены термины для самообучения.

Здесь чувствуется некоторая свобода - просто завершить курс легко и быстро, большого труда не составит. Задания и практические семинары составлены таким образом, что есть много свободы для "поковыряться" самому.

Спасибо большое ребятам за отличный курс! Уже вовсю изучаю следующий))

by rerf2010rerf

2019年5月30日

Хороший вводный курс в специализацию, позволяет понять набор тем, которые будут впоследствии затронуты и освежить их в памяти, не сильно зарываясь в детали. Конечно, если есть, что освежать) Но курс именно что вводный и явно не для новичков в программировании и математике, так что если у вас по этим темам только забытые школьные знания, то вы в нём вряд ли что-то поймёте, придётся много учиться самостоятельно по университетским учебникам, или взять курс попроще. Но лично для меня это был плюс, математическое образование и работа программистом за плечами всё таки)

Ещё из несущественных минусов - курс до сих пор на Python 2.7, хотя до окончания его официальной поддержки осталось меньше года. Впрочем, вам ничего не помешает использовать python 3, как я и сделал. Единственное неудобство - некоторые предоставляемые в курсе примеры и notebook'и придётся немного править, чтобы запустить их в 3 версии питона.

by Maksim S

2018年2月28日

Хороший курс, позволил вспомнить вышку, и понять, как её можно использовать в своей профессии. Серьёзный минус преподавателям в универе - и думаю, не только в моём - это то, что математика даётся совершенно абстрактно. В итоге несколько лет учёбы, если студент дальше сразу не уходит в math-related область, оказываются просто потеряны. А ведь могли бы добавить чуть проблемоориентированности и прикладных моментов, и поднять как качество образования, так и престиж учреждения, на новую планку.

Из минусов данного курса - очень высокий темп передачи информации. Первые лекции зашли хорошо, но дальше всё объясняли более и более кратко, и теорию вероятности и статистику, например, пришлось пересматривать по нескольку раз, параллельно разыскивая краткий и по-человечески написанный материал на тему. Но ставлю всё равно "отлично", так как получилось здорово и познавательно!

by Ivan G

2016年3月5日

GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT! GREAT!

by Кузьмин Ю

2017年6月25日

Отлично заставляет вспомнить универ и напоминает базовые понятия матанализа, линейной алгебры, теории вероятности и статистики. Доступным языком, сжато и понятно (почти везде). Правда, из-за сжатого формата лекций приходится иногда обращаться к внешним источникам, но это только "плюс", если ты нацелен на развитие, а не просто получение сертификата. Интересные практические задания и тесты углубляют понимание и заставляют по-новому взглянуть на, казалось бы, понятные вещи и понятия.

В работе тоже помогает - и как улучшение профессиональных навыков аналитика и как дополнительное развитие в целом. Для тех, кто никогда не программировал и не изучал матан/линейку/тервер может быть сложновато учиться, совмещая учёбу с полной занятостью на работе.

by Ivan C

2017年10月15日

Побольше бы по python - использование алгоритмов, опора именно на синтаксис, которые не реализуется в других языка, а то ведь я, например, писал код "теми же граблями", что и в других языках, а если посерфить в i-net - классные вещи люди вытворяют;

явно поменьше б пределов, производных - тут ведь не школьники все же, и других базовых глав мат дисциплин; Теорвер - далеко не самое лучше разъяснение материала, ну может это вследствие лимитированности видео-записей, но тогда: а зачем они вообще, если свою функцию не выполняют, а если говорить: ну материал же простой - тогда зачем на него время тратить, а лан - тут одна демагогия...

Спасибо, теперь только ipython notebook буду использовать

by Белякова М С

2017年8月20日

Спасибо всей команде-разработчиков данного курса! Было очень интересно его проходить.

Понравилось, что знания математики тут же находили реализовывались в Python.

Очень понравилось последнее задание про проверку ЦПТ, когда ты видишь на реальных выборках и реальном коде работу теории. Теория подкрепляется практикой, это очень круто.

Еще раз спасибо вам!

Одно маленькое замечание про то, что в первых двух неделях знания по Python очень не ложились.

То есть много было теории, а чтобы научиться, нужно попробовать. Да, после были задания написать код на Python, но все равно, мне кажется, много что я пропустила мимо ушей из первых лекций потому, что не попробовала написать код.

by Vladislav K

2018年11月21日

Хороший курс для того чтобы получить/освежить знания по математике и Python. Конечно, многие темы затрагиваются лишь поверхностно, но вы всегда можете более подробно почитать о них в рекомендуемой литературе. Задания неплохие, показалось что даже слишком легкие, но если вы новичок в Python, то у вас могут возникнуть трудности, да и в принципе хотелось бы больше заданий по программированию. Отдельно хочется отметить конспекты: они очень хороши, уверен, что буду пользоваться ими, для того чтобы освежить знания. Из минусов могу отметить использования 2-й версии языка Python, я сдавал 3 и особых проблем не возникло, но все же решил об этом упомянуть.

by Породнова М А

2018年7月19日

В обучении в рамках данного курса все понравилось.

Есть один нюанс - я начинаю совсем с "0". 11 лет назад окончила Физтех УПИ и с тех пор по профессии не работала, сейчас начинаю все сначала. В программировании опыта совсем нет, поэтому было бы здорово увеличить объем информации именно по программированию, как таковому. Понимаю, что в основном на такое обучение приходят не новички, но может быть для нулевых пользователей вы сделаете допраздел с большим количеством информации по программированию, заданиями на технику программирования, на оптимизацию кода и т.д.

В остальном, все понравилось. Иду учиться дальше на следующие курсы.

by Ульянова М Г

2019年7月31日

В таком сжатом, а главное, понятном виде суметь изложить основы мат. анализа, линейной алгебры и мат. статистики с теорией вероятности, да еще и с практическим применением полученных знаний в Python - это по-настоящему круто! С помощью этого курса я освежила подзабытые знания и сумела понять некоторые вещи, которые остались непонятными в процессе получения очного высшего образования в университете. И это классно, когда лекции настоящих профессионалов можно слушать дома, когда тебе удобно, и можно пересмотреть столько раз, сколько нужно, чтобы действительно понять материал, а не просто прослушать ради галочки.

by Nataliya V

2020年4月6日

Прекрасный курс от лучшего университета нашей страны (МФТИ) и лучшей ИТ-компании РФ (Яндекс)! Отмечу высокую концентрацию знаний - пришлось "вспомнить всё" из университетских курсов: мат. анализ, линейную алгебру, мат. статистику, теорию вероятности, методы оптимизации, а также изучить много того, что не знала раньше. Порой было очень непросто, но зато азартно и увлекательно, огромное спасибо! Отдельная благодарность всем преподавателям и разработчикам курса, а также менторам, которые терпеливо отвечали на вопросы на форуме. Мне особенно помогли рекомендации Алексея Задойного, спасибо!

by Олешко

2016年11月7日

Спасибо за курс!

Идеально подойдёт для тех кто изучал математику в универе, слушая "одним ухом" и толком не вдаваясь в детали. У меня было так, потому что просто не понимал, зачем могут быть нужны все эти матрицы, векторы, кроме как для фундаментальных теоретических исследований, которые меня мало интересовали. Оказалось, это может быть полезно и на практике. Курс хорошо освежает в памяти забытые формулы и понятия. Однако, из-за предельной краткости и лаконичности изложения некоторые вещи остаются не понятными и приходится обращаться к дополнительным источникам, но это вполне нормально.

by Рогозин А

2020年4月9日

Курс позволяет получить необходимую базу, без которой не получится в дальнейшем в полной мере изучать линейные модели, регрессию, деревья и т.п. В редких местах было непонятно, благо есть замечательный сайт Mathprofi, который я помню ещё со студенческой скамьи, и справочники в интернете по Питону. Увы, курс изучал больше, чем месяц)

Хотелось бы больший акцент на numpy - мне показалось, что ему уделили не так много внимания, хотя это мощный инструмент для работы с векторами.

Спасибо за курс, было познавательно.

P.S. Без базовых знаний матана будет сложно, берегитесь)

by Dasha S

2016年8月15日

Курс хороший. Мне помог вспомнить, что я забыла со времен университета. Но я часто ловила себя на мысли, что, если бы мне надо было не вспоминать, а изучать весь материал с нуля, было бы сложно. Задания интересные и отлично возвращают в забавное состояние, когда ты одновременно знаешь, что требуется сделать в целом, и останавливаешься на какой-нибудь мелочи, вроде квадратиков вместо русских букв, и вынужден пересматривать лекции вновь и вновь, потому что точно помнишь, что где-то там объясняли, что делать, чтоб так не случилось, но ты, конечно же, пропустила.

by Ivan S

2018年1月20日

Очень хороший курс. Много сложных и интересных заданий, много практики. Большая часть необходимой теории, особенно математической рассказывается довольно подробно. Много пояснений из реальных примеров из практики, что помогает лучше настроиться. Жаль, что для освоения некоторых практических заданий всё же необходимо обращаться к другим источникам, читать документацию. Жаль, что нет некоторых подготовительных материалов, которые бы представляли отдельные элементы ipython-ноутбуков для практических заданий. Но и за это тоже большое спасибо, молодцы!

by fearning

2017年1月17日

Прекрасный курс, освежающий курс математики в мозгу. Доступность изложения позволила переосмыслить математические основы(во время написания отзыва заканчиваю вторую неделю). Параллельное введение в практические инструменты не позволяет воспринять теорию как что-то ненужное и малозначимое. Разве что использование второй ветки python не до конца понятно использование второй ветки python.

Обязательно буду проходить всю специализацию, правда, в рамках бесплатно доступного, я общажный студент и иногда хочется кушать)

by Александр П

2017年8月6日

Закончил первый курс. Ранее не имел опыта программирования на Python, поэтому первая задачка по программированию далась непросто. Некоторый опыт работы на плюсах и матлабе помог мне с ней справиться, и когда освоился с синтаксисом, стало гораздо проще. Думаю для тех, кто вообще не изучал программирования это может стать непреодолимым барьером. По самому материалу - подача замечательная, все разжевано на интуитивно понятном уровне. Жаль только, что курс быстро кончился, ну ничего, впереди еще пять есть:)

by Anton K

2017年11月15日

Очень хороший курс. Несмотря на то, что в данный момент я работаю разработчиком, всегда ощущал пробелы в базовом математическом образовании и от этого была неуверенность. После этого курса стал увереннее себя чувствовать: школьного курса алгебры полностью достаточно чтобы понять весь материал курса, а самостоятельная работа над заданиями в ipython notebook еще лучше позволяет разобраться в той или иной проблеме. P.S. Особенно понравился раздел про статистику и матричные разложения.

by Andrii O

2020年5月3日

Очень хороший курс, освежающий знания по высшей математике. К сожалению, если у человека нет математической базы, то я думаю, что этого курса совсем не достаточно. Но таким людям просто надо изучать Матан, линейную алгебру и аналитическую геометрию с теорией вероятности и мат статистики. Я очень доволен, что начал изучать ML именно с этими ребятами. В отличие от некоторых известных курсов по ML тут дается Python а не Matlab (необходимость и целесообразность которого под вопросом).

by Константин С

2018年1月23日

курс понравился плотностью подачи и одновременно доступностью. просто объясняют сложные вещи. и ещё здорово что всё о чём рассказывали можно скачать - программы по программированию или конспекты по математике, спокойно потом разобрать детально. в универе вроде говорили ту же теорию, но много деталей, и не рассказывали зачем это всё и для чего. здесь всё наоборот - упор на практическое применение без доказательства теорем и лишних слов и терминов. эх где вы были 15 лет назад..