Chevron Left
Математика и Python для анализа данных に戻る

モスクワ物理工科大学(Moscow Institute of Physics and Technology) による Математика и Python для анализа данных の受講者のレビューおよびフィードバック

4.8
5,459件の評価
926件のレビュー

コースについて

Анализ данных и машинное обучение существенно опираются на результаты из математического анализа, линейной алгебры, методов оптимизации, теории вероятностей. Без фундаментальных знаний по этим наукам невозможно понимать, как устроены методы анализа данных. Задача этого курса — сформировать такой фундамент. Мы обойдёмся без сложных формул и доказательств и сделаем упор на интерпретации и понимании смысла математических понятий и объектов. Для успешного применения методов анализа данных нужно уметь программировать. Фактическим стандартом для этого в наши дни является язык Python. В данном курсе мы предлагаем познакомиться с его синтаксисом, а также научиться работать с его основными библиотеками, полезными для анализа данных, например, NumPy, SciPy, Matplotlib и Pandas. Видео курса разработаны на Python 2. Задания и ноутбуки к ним адаптированы к Python 3....

人気のレビュー

GD
2018年8月8日

Лучший вводный курс, который я видел. Есть мелкие огрехи в изложении математической части, но это ерунда по сравнению с четкостью и полнотой изложения программистской части и обилием примеров. Спасибо

KA
2016年2月15日

Прошел много курсов по Data Science, этот курс не разочаровал. Подается в лучших западных традициях. Неформально объясняется материал, много примеров. Надеюсь, и дальше специализация не подкачает.

フィルター:

Математика и Python для анализа данных: 126 - 150 / 893 レビュー

by Max D

2017年6月14日

Этот курс считается введением в специальность, и мне кажется, свою задачу он полностью выполняет. Действительно, математики как таковой не очень много, но то, что нужно объясняется очень доходчиво; программирование на питоне тоже понравилось. После этого курса у меня сложилось ощущение того, что мне хочется продолжать заниматься и переходить на следующие курсы!

by Рябинин И А

2020年10月20日

Отличный курс. Единственное, без бакалавриата (даже самого примитивного), где изучались основы высшей математички и мат. анализа, почти нереально въехать в эту тему. Пришлось вспоминать некоторые вещи из универа, а некоторые изучать отдельно. В любом случае, спасибо огромное за курс, буду продолжать изучать специализацию! Удачи в ваших дальнейших проектах!

by Alexander B

2018年9月25日

Добавляйте комментарий в код, который дается для самостоятельного изучения, или хотя бы вставляйте ссылки на техническую документацию. Иначе часто возникает просто комедийная ситуация. Когда начинаешь изучать что вы даете в уроках или пишете в коде используешь данные других обучающих курсов(бесплатных между прочим) чтобы понять чему учат на платном курсе:)

by Денис О Г

2019年6月9日

Это был мой первый курс на Курсере. Курс мне очень понравился!

Понравилось: качество и состав подготовленных конспектов, подача материала, подготовленные задания.

Было бы здорово, для используемых в уроках математических терминов на русском языке, давать их английские эквиваленты - это бы упростило навигацию в мире python, да и в мире математики целом.

by Павел М

2019年5月7日

Неплохой вводный курс, чтобы освежить в памяти основные разделы математического анализа, линейной алгебры, теории вероятности и статистики, вспомнить теорию и поупражняться в решении задач, а также познакомиться с языком Python и библиотеками, необходимыми для дальнейшего изучения и практического применения машинного обучения и анализа данных.

by Polina

2018年2月15日

Курс классный!

Очень интересно и понятно рассказано о питоне, основной математике, теории вероятностей. Я не подозревала, что смогу этот материал так хорошо и глубоко усвоить. Особенно понравились уроки про теорию вероятностей и мат. статистику. Практические задания очень интересные! С удовольствием перехожу к следующему курсу в специализации:)

by Андрей П

2019年11月7日

Гораздо лучше и основательнее, чем ожидалось. Надо признать, что среди курсов на русском языке аналоги найти сложно (если вообще возможно). Теоретические знания, полученные в данном курсе станут основательной базой для всей дальнейшей специализации, которая, в свою очередь, не сомневаюсь, откроет двери в дивный мир машинного обучения!

by Лідія Ч

2017年3月8日

Спасибо преподавателям и всей ихней команде за проделанную работу! Этот курс то, что нужно для входа в среду математики и програмирования. Он помог мне понять где и как можно применить высшую математику, вспомнить забытое. Я всегда думала, что програмирование это что-то очень сложное и страшное, но оказалось всему можно научиться.

by Хуторянский Я А

2017年9月11日

Курс нельзя назвать примитивным, т.к. многие моменты (хоть и рассказываемые в шутливой, интересной манере) требуют дополнительного погружения в предмет для лучшего понимания их сути. Это касается математики.

Объем и уровень погружения в основы программирования на Python достаточен для того, чтобы заразиться им и даже влюбиться :)

by Вернер А И

2017年6月13日

Отличный курс для тех, кто хочет освежить в памяти вузовские знания высшей математики, необходимые для машинного обучения. Курс также грамотно и быстро обучает основам языка программирования Python и использованию необходимых в машинном обучении библиотек, что тоже очень полезно для тех, кто хочет освоить эту область. Рекомендую.

by Alexey S

2016年3月8日

Очень хороший старт, позволил многое вспомнить и систематизировать. Если есть понимание из мат. анализа, линейной алгебры и статистики, то можно смело браться за курс, если нет, то лучше где-то приобрести перед началом. Команде, работавшим над курсом хочется сказать слова благодарности и пожелания не снижать планку в дальнейшем.

by Gnutov D S

2020年11月2日

Вполне неплохой курс! Помогает войти "с ноги" в математику DS. Спасибо создателям курса! Но, это конечно не для полных новичков! Перед началом этого курса я советую пройти курс "Поколение пайтон", и после начать проходить "Практикум по Пайтон" к этому курсу! (Это все на степике). Ну и школьную математику повторить. Всем удачи!

by EKATERINA B

2019年3月18日

Хороший курс, отличные лекторы. Курс все же не для совсем начинающих, если нет хотя бы небольшого бэкграунда по математике и программированию, то нужно закладывать существенное время для дополнительного самостоятельного изучения. По программированию также было бы полезно заранее пройти какой-то курс по начальному уровню Pyton.

by Матушевич О

2018年2月14日

Спасибо!

Помогли восстановить некоторые забытые темы из изученных, но неиспользуемых разделов математики. Но гораздо больше помогли в изучении основ Python, в том числе благодаря бесплатному тренажеру к этому курсу на Stepik. Задание на программирование в Python ко второй недели было оч сложное, но, пожалуй, его стоило пройти.

by Denis I

2019年3月13日

Отличный курс. Лекторы доступно и интересно объясняют, тесты и практические задания хорошо составлены. Очень неплохие jupyter-ноутбуки даны на каждой неделе. Единственный минус - ваши задания могут долго проверяться другими учениками. Используйте телеграм-канал, чтобы найти тех, кому тоже нужна проверка и помочь друг другу.

by Денис К

2018年12月27日

Курс великолепный. Лучшее, что я смог найти в рунете. Математика даётся на уровне хорошего технического ВУЗа. (Предполагаю, что на уровне МФТИ). Некоторые задания показались мне довольно сложными, но при этом они очень интересные и запоминающиеся. Можно сказать, со своей харизмой. В общем, эталонный курс. Я в восторге.

by Andryuschenko A

2016年9月30日

Спасибо МФТИ и Яндекса за такой курс! Все очень понятно и дохотчиво. Многие задачи можно сразу же применять на "практике", например задачу "сравнение предложений" легко переделать в задачу по поиску "дубликатов картинок картинок". Это маленькое начало для большого пути в Машинное обучение и анализ данных. Так держать

by Andrii K

2018年2月19日

За 4 недели курс дает понимание, зачем же ты изучал математику в школе и университете - это очень здорово. В каждом блоке курса есть прикладные задачи, результат которых интересен сам по себе. Возможно, стоит добавить более прикладные задачи для задания про ЦПТ.

В целом, курс отличный, большое спасибо Яндексу и МФТИ!

by Erik M

2019年9月16日

Хороший вводный курс, интересные практические задания, качественные конспекты.Это не первый мой курс по DS, поэтому я в большей степени освежил знания, чем приобрел новые.

Из минусов - мне показалось недостаточным количество теоретического материала по математическим аспектам курса

Обязательно продолжу специализацию.

by Климкович А С

2019年11月22日

Огромное спасибо за курс!!!

Очень приятное изложение материала! Тесты помогли выявить пробелы. Очень понравились задания - много открытий - например, что многочленом можно приблизить функцию. Понравилось самой убедиться в верности ЦПТ! "Кошачья тема" понравилась тем, что похожа на реальные задачи анализа данных.

by Xenia F

2018年6月22日

Обкладываться учебниками не пришлось. Очень приятно было решать задачи, сложность оптимальная. Порадовало, что много подсказок для решения, по сравнению с другими многими курсами - не создавалось ощущения безысходности. Лекторы очень приятные. Возможно, хотелось бы больше математики, но это в курсе не заявлено.

by Радионов А

2017年8月31日

Авторам удалось подобрать материал так, чтобы дать системное представление о предметной области и используемых инструментах, при этом не слишком сильно погружаясь в теорию.

Немного странно, что до сих пор в заданиях используется Python 2.x, но это не страшно: в Python 3.х многое было перенесено в том же виде.

by Ирина В

2017年6月26日

Хороший быстрый курс для оперативного погружения в основные понятия для анализа данных и базовый питон. Мне бы хотелось больше математики, особенно по темам четвертой недели (идеально было бы её вообще растянуть на две недели), но для старта - вполне. Объясняют понятно, задания не сложные, но и не простые.

by Павельев А В

2019年9月13日

Отличный курс для тех, кто имеет хорошую базовую подготовку в объеме вузовской программы по высшей математике и программированию. Данный курс дает хорошие вводные знания. Задачи оптимальны по уровню сложности - не слишком легко, не слишком сложно. Спасибо огромное организаторам и платформе Coursera!

by Natalia P

2016年3月22日

Курс отличный и полностью соответствует описанию. Можно увидеть отзывы, где говорят, что приходилось очень много гуглить, чтобы пройти задания. Это неправда. Просто нужно было внимательнее смотреть лекции и решая задания иметь цель получить знания, а не просто натыкать очевидные варианты ответов.