Chevron Left
Machine Learning: Classification に戻る

ワシントン大学(University of Washington) による Machine Learning: Classification の受講者のレビューおよびフィードバック

4.7
3,498件の評価
580件のレビュー

コースについて

Case Studies: Analyzing Sentiment & Loan Default Prediction In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank. These tasks are an examples of classification, one of the most widely used areas of machine learning, with a broad array of applications, including ad targeting, spam detection, medical diagnosis and image classification. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier. This course is hands-on, action-packed, and full of visualizations and illustrations of how these techniques will behave on real data. We've also included optional content in every module, covering advanced topics for those who want to go even deeper! Learning Objectives: By the end of this course, you will be able to: -Describe the input and output of a classification model. -Tackle both binary and multiclass classification problems. -Implement a logistic regression model for large-scale classification. -Create a non-linear model using decision trees. -Improve the performance of any model using boosting. -Scale your methods with stochastic gradient ascent. -Describe the underlying decision boundaries. -Build a classification model to predict sentiment in a product review dataset. -Analyze financial data to predict loan defaults. -Use techniques for handling missing data. -Evaluate your models using precision-recall metrics. -Implement these techniques in Python (or in the language of your choice, though Python is highly recommended)....

人気のレビュー

SM
2020年6月14日

A very deep and comprehensive course for learning some of the core fundamentals of Machine Learning. Can get a bit frustrating at times because of numerous assignments :P but a fun thing overall :)

SS
2016年10月15日

Hats off to the team who put the course together! Prof Guestrin is a great teacher. The course gave me in-depth knowledge regarding classification and the math and intuition behind it. It was fun!

フィルター:

Machine Learning: Classification: 276 - 300 / 548 レビュー

by Vijai K S

2016年3月5日

Heck yeah!! its finally here :D

by Vinothkumar G

2020年7月11日

Very useful learning platform.

by Jinho L

2016年7月20日

Very pragmatic and interesting

by Snehotosh B

2016年3月20日

Excellent and very intuitive.

by Neemesh J

2019年10月28日

Awesome learning experience.

by Fan J

2019年8月3日

good content, help me a lot!

by Mike M

2016年7月16日

Learned a lot, great course!

by Dwayne E

2016年12月20日

Awesome course learned alot

by Rui W

2016年9月13日

So cool and much practical.

by kumar A

2018年6月5日

great course for beginners

by Lixin L

2017年5月7日

really good course. thanks

by MRS. G

2020年5月9日

GREAT LEARNING EXPERIENCE

by Satish K D

2019年2月3日

it was easy to understand

by FanPingjie

2018年12月9日

useful and helpful course

by Lars N

2016年10月4日

Best course taken so far!

by Venkata D

2016年4月14日

Great course and learning

by Brian N

2018年5月20日

Nice to learn this topic

by Mark h

2017年7月27日

Very Helpful Material!!!

by Shiva R

2017年4月16日

Exceptional and Intutive

by Shanchuan L

2016年12月7日

This is a perfect course

by ChangIk C

2016年10月25日

Learned a lot recommend!

by Alexander S

2016年8月7日

one of the best courses.

by Yacine M T

2019年7月31日

Very helpful. Thank you

by Fakhre A

2017年2月17日

Outstanding Course.....

by Weituo H

2016年3月14日

Useful and interesting~