Chevron Left
Machine Learning: Classification に戻る

ワシントン大学(University of Washington) による Machine Learning: Classification の受講者のレビューおよびフィードバック

4.7
3,600件の評価
597件のレビュー

コースについて

Case Studies: Analyzing Sentiment & Loan Default Prediction In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank. These tasks are an examples of classification, one of the most widely used areas of machine learning, with a broad array of applications, including ad targeting, spam detection, medical diagnosis and image classification. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier. This course is hands-on, action-packed, and full of visualizations and illustrations of how these techniques will behave on real data. We've also included optional content in every module, covering advanced topics for those who want to go even deeper! Learning Objectives: By the end of this course, you will be able to: -Describe the input and output of a classification model. -Tackle both binary and multiclass classification problems. -Implement a logistic regression model for large-scale classification. -Create a non-linear model using decision trees. -Improve the performance of any model using boosting. -Scale your methods with stochastic gradient ascent. -Describe the underlying decision boundaries. -Build a classification model to predict sentiment in a product review dataset. -Analyze financial data to predict loan defaults. -Use techniques for handling missing data. -Evaluate your models using precision-recall metrics. -Implement these techniques in Python (or in the language of your choice, though Python is highly recommended)....

人気のレビュー

SM
2020年6月14日

A very deep and comprehensive course for learning some of the core fundamentals of Machine Learning. Can get a bit frustrating at times because of numerous assignments :P but a fun thing overall :)

SS
2016年10月15日

Hats off to the team who put the course together! Prof Guestrin is a great teacher. The course gave me in-depth knowledge regarding classification and the math and intuition behind it. It was fun!

フィルター:

Machine Learning: Classification: 476 - 500 / 566 レビュー

by Franklin W

2017年5月4日

Great beginner/advanced course for Machine Learning Classification!

by Pascal U E

2016年3月7日

Take you too long to come back, but the content is great. Good job

by Michael B

2016年9月4日

Good survey of the material, but assignments are superficial.

by vardan l

2018年1月26日

Some instructions in programming assignments are not clear.

by charan S

2017年7月30日

Very nice course, detailed explanations and visualizations.

by Sahil M

2018年7月10日

Was a good course with some in-depth topics covered!

by Jiancheng

2016年3月20日

good course but too much easy, can be a good review.

by Hanqiao L

2016年8月9日

Need more content for SVM and Random Forest

by Alejandro T

2017年9月9日

It's a really good course, really liked it

by Mohit G

2019年2月2日

Good, insightful but repetitive coding.

by Sah-moo K

2016年4月3日

Decision trees and boosting were great.

by Chitrank G

2020年5月10日

The course is excellent for beginners.

by Gareth W J

2019年8月26日

A good course to teach the key points.

by Hexuan Z

2016年10月6日

could be more challengable homework!!

by Vladislav V

2016年5月13日

It feels like it lacks certain depth.

by Shashwat G

2020年5月22日

Course material can be much better

by Farmer

2018年8月12日

Exercises are way too easy.

by Aadesh N

2016年6月13日

Great course materials

by Xiaojie Z

2017年1月31日

Can be more detailed.

by Ragunandan R M

2018年9月17日

Good overall course.

by 2K18/SE/035 A K

2020年11月11日

content is complete

by Lim W A

2016年11月21日

Learnt new things.

by Mehul P

2017年8月17日

Nice explanation.

by gaozhipeng

2016年6月30日

good introduction

by Alberto B

2018年3月17日

Very good course