Chevron Left
Optimize ML Models and Deploy Human-in-the-Loop Pipelines に戻る

deeplearning.ai による Optimize ML Models and Deploy Human-in-the-Loop Pipelines の受講者のレビューおよびフィードバック

4.7
77件の評価

コースについて

In the third course of the Practical Data Science Specialization, you will learn a series of performance-improvement and cost-reduction techniques to automatically tune model accuracy, compare prediction performance, and generate new training data with human intelligence. After tuning your text classifier using Amazon SageMaker Hyper-parameter Tuning (HPT), you will deploy two model candidates into an A/B test to compare their real-time prediction performance and automatically scale the winning model using Amazon SageMaker Hosting. Lastly, you will set up a human-in-the-loop pipeline to fix misclassified predictions and generate new training data using Amazon Augmented AI and Amazon SageMaker Ground Truth. Practical data science is geared towards handling massive datasets that do not fit in your local hardware and could originate from multiple sources. One of the biggest benefits of developing and running data science projects in the cloud is the agility and elasticity that the cloud offers to scale up and out at a minimum cost. The Practical Data Science Specialization helps you develop the practical skills to effectively deploy your data science projects and overcome challenges at each step of the ML workflow using Amazon SageMaker. This Specialization is designed for data-focused developers, scientists, and analysts familiar with the Python and SQL programming languages and want to learn how to build, train, and deploy scalable, end-to-end ML pipelines - both automated and human-in-the-loop - in the AWS cloud....

人気のレビュー

KK

2022年2月15日

Highly technical but beneficial course that allows you to explore resource constraints of an ML application. Thanks for simplifying as much as possible, enjoyed every bit!

LL

2021年7月21日

In this course I learn about training, fine-tuning, deploying and monitoring Models in AWS. The ideas about Human-in-the-loop pipelines is pretty cool.

フィルター:

Optimize ML Models and Deploy Human-in-the-Loop Pipelines: 1 - 21 / 21 レビュー

by Alexander M

2021年8月29日

by Diego M

2021年11月20日

by Sanjay C

2022年1月17日

by Mark P

2021年9月13日

by Parag K

2021年10月22日

by YANGYANG C

2021年9月4日

by Chris D

2021年8月28日

by Kaan G K

2022年2月16日

by phoenix c

2021年9月12日

by lonnie

2021年7月22日

by Martin H

2022年3月23日

by Simon h

2021年9月14日

by yugesh v

2022年1月5日

by James H

2022年5月27日

by Kee K Y

2021年8月7日

by k b

2022年1月31日

by Daniel M

2022年1月16日

by Iakovina K

2022年5月13日

by Muhammad D

2022年8月18日

by Antony W

2021年8月17日

by Siddharth S

2022年3月31日