Данный курс научит вас строить модели естественных языков, звуков и других последовательных данных. Благодаря глубокому обучению последовательные алгоритмы сегодня работают в разы лучше, чем ещё два года назад. Это открывает широчайший спектр возможностей применения алгоритмов в распознавании речи, синтезе музыки, чат-ботах, машинном переводе, понимании естественных языков и во многом другом.

Последовательные модели
deeplearning.aiこのコースについて
習得するスキル
- Machine Translation
- Word Embedding
- Combination
- Deep Learning
提供:

deeplearning.ai
DeepLearning.AI is an education technology company that develops a global community of AI talent.
シラバス - 本コースの学習内容
Рекуррентные нейронные сети
В этом разделе вы познакомитесь с принципами работы рекуррентных нейронных сетей (РНС, RNN). Этот тип сетей показывает прекрасную работу с темпоральными данными и существует в нескольких вариантах, таких как LSTM (ДКП), GRU (УРБ), и двунаправленная РНС (Bidirectional RNN), о которых вы узнаете в этом разделе.
Обработка естественного языка и векторное представление слов
Сочетание обработки естественного языка и глубокого обучения — очень важное сочетание. Используя векторное представление слов и слои встраивания, вы сможете обучать рекуррентные нейронные сети, добиваясь выдающейся производительности в широком спектре областей. Примеры применения: анализ тональности текста, распознавание именованных сущностей и машинный перевод.
Последовательные модели и механизм внимания
Последовательные модели могут быть дополнены с использованием механизма внимания. С помощью этого алгоритма ваша модель сможет понять, на чем следует сосредоточить внимание, с учетом последовательности входных данных. На этой неделе вы также узнаете о распознавании речи и работе с аудиоданными.
よくある質問
いつ講座や課題にアクセスできるようになりますか?
修了証を購入すると何を行えるようになりますか?
学資援助はありますか?
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。