Chevron Left
Probabilistic Graphical Models 2: Inference に戻る

スタンフォード大学(Stanford University) による Probabilistic Graphical Models 2: Inference の受講者のレビューおよびフィードバック

4.6
470件の評価

コースについて

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems. This course is the second in a sequence of three. Following the first course, which focused on representation, this course addresses the question of probabilistic inference: how a PGM can be used to answer questions. Even though a PGM generally describes a very high dimensional distribution, its structure is designed so as to allow questions to be answered efficiently. The course presents both exact and approximate algorithms for different types of inference tasks, and discusses where each could best be applied. The (highly recommended) honors track contains two hands-on programming assignments, in which key routines of the most commonly used exact and approximate algorithms are implemented and applied to a real-world problem....

人気のレビュー

AT

2019年8月22日

Just like the first course of the specialization, this course is really good. It is well organized and taught in the best way which really helped me to implement similar ideas for my projects.

AL

2019年8月19日

I have clearly learnt a lot during this course. Even though some things should be updated and maybe completed, I would definitely recommend it to anyone whose interest lies in PGMs.

フィルター:

Probabilistic Graphical Models 2: Inference: 1 - 25 / 74 レビュー

by AlexanderV

2020年3月9日

by Shi Y

2018年12月16日

by Jonathan H

2017年8月3日

by Anurag S

2017年11月8日

by Tianyi X

2018年2月23日

by Deleted A

2018年11月18日

by Michael K

2016年12月24日

by george v

2017年11月28日

by Kaixuan Z

2018年12月4日

by Michel S

2018年7月14日

by Jiaxing L

2016年11月27日

by Hunter J

2017年5月2日

by Kuan-Cheng L

2020年7月23日

by Mahmoud S

2019年2月22日

by Sergey S

2020年9月24日

by Chan-Se-Yeun

2018年1月30日

by Rishi C

2017年10月28日

by Dat N

2019年11月20日

by Satish P

2020年8月28日

by Alfred D

2020年7月29日

by Ayush T

2019年8月23日

by Anthony L

2019年8月20日

by Lik M C

2019年2月3日

by Orlando D

2017年3月12日

by Yang P

2017年5月29日