Chevron Left
Applied Machine Learning in Python に戻る

ミシガン大学(University of Michigan) による Applied Machine Learning in Python の受講者のレビューおよびフィードバック

4.6
5,845件の評価
1,043件のレビュー

コースについて

This course will introduce the learner to applied machine learning, focusing more on the techniques and methods than on the statistics behind these methods. The course will start with a discussion of how machine learning is different than descriptive statistics, and introduce the scikit learn toolkit through a tutorial. The issue of dimensionality of data will be discussed, and the task of clustering data, as well as evaluating those clusters, will be tackled. Supervised approaches for creating predictive models will be described, and learners will be able to apply the scikit learn predictive modelling methods while understanding process issues related to data generalizability (e.g. cross validation, overfitting). The course will end with a look at more advanced techniques, such as building ensembles, and practical limitations of predictive models. By the end of this course, students will be able to identify the difference between a supervised (classification) and unsupervised (clustering) technique, identify which technique they need to apply for a particular dataset and need, engineer features to meet that need, and write python code to carry out an analysis. This course should be taken after Introduction to Data Science in Python and Applied Plotting, Charting & Data Representation in Python and before Applied Text Mining in Python and Applied Social Analysis in Python....

人気のレビュー

OA

Sep 09, 2017

This course is ideally designed for understanding, which tools you can use to do machine learning tasks in python. However, for deep understanding ML algorithms you should take more math based courses

FL

Oct 14, 2017

Very well structured course, and very interesting too! Has made me want to pursue a career in machine learning. I originally just wanted to learn to program, without true goal, now I have one thanks!!

フィルター:

Applied Machine Learning in Python: 176 - 200 / 1,026 レビュー

by Tsuyoshi N

Oct 13, 2018

Excellent course. I liked the projects in this course to recap the theories that I learned in the lecture and examine the new knowledge that I learned by myself with reading python library documents online.

by Alexandre M

Feb 01, 2019

Good class, and it's very nice to have the "applied" machine learning angle (as opposed to focusing on the mathematical / theoretical underpinnings, which are only important at a much later point in time)

by Josh B

Feb 04, 2018

Excellent introductory course to machine learning using python. It covers the basics for the popular supervised machine learning algorithms. I'm excited to build on the knowledge this course has given me.

by NoneLand

Jan 22, 2018

A very practical course for machine learning. By this course, one can get familiar with sklearn and pandas basic operation! The last assignment is a challenge for me. Thanks teacher for this great course!

by Dongliang Z

Dec 22, 2017

Very good lecture for beginner:easy to understand.

Also good assignment: force you to use what you learned in the course.

The discussion forum is helpful when you meet difficulties in assignments and quiz.

by Steven L

Apr 08, 2018

Very practical introduction to using Python for machine learning - less focused on theory and more focused on how to use the sklearn library and proper use cases for different classifiers and regressors.

by Carlos D R

Dec 16, 2019

The course offers you a lots fot tools the face ML problems. There are few errors in the notebooks, but everyting is well documented in the forum. Good overview to represent data and train basic models.

by Giorgio C

Aug 25, 2017

The course is well structured and covers all the most important topics. The programming assignment could be a bit more stimulating. Overall I'd recommend this course to everyone who's interested in ML.

by Ewa L

Jun 18, 2017

Fantastic course! Great foundation on scikit-learn. Really focused on APPLYING machine learning with just enough information about the models themselves to understand what's going on behind the scenes.

by Angelo S

Dec 21, 2018

An excellent resource to immerse yourself into machine learning methods. Professor Kevyn explains key concepts in the most intuitive way possible. It does require some previous experience in Python.

by Pankajkumar S

Jun 04, 2019

This is an excellent course. The programming exercises can be solved only when you get the basics right. Else, you will need to revisit the course material. Also, the forums are pretty interactive.

by Petko S

Apr 03, 2018

Extremely useful course! You really get a lot of value from it and exactly what you would expect from such course! Very entertaining and a lot of additional educational materials! Thank You a lot!

by Shashank S S

Aug 19, 2017

the content of videos , quiz and exercise all work extremely well together towards the stated goal of the course i.e. to give the learner a good over view of how to apply ML theories into action

by Michael B

Jun 19, 2017

Not for the faint of heart and some experience with Python, in particular Pandas, is preferred. Great overview of the different methods used in machine learning. One of the better courses imo.

by PRAKHAR K J

Apr 13, 2020

It feels good to learn something new and highly skilled demand in Engineering. Thanks to Coursera and instructor for providing such a wonderful opportunity of learning through your platform.

by Jens L

Aug 20, 2018

Concise and clear presentation of the material with the majority of time focused around using TDD to learn and practice concepts through developing solutions to open ended coding challenges.

by Amithabh S

Jun 23, 2017

Excellent course for someone who already has some knowledge of python but not quite familiar with machine learning. This course will teach you the application of machine learning in python.

by Abdirahman A A

Jan 13, 2019

In depth course that covers a lot in a short amount of time. If you take some extra time to delve deeper into these topics, you can ensure a great overview of machine learning with python.

by Indrajit P

Mar 29, 2020

Very well structured and informative course ! All the lectures are concise and give enough context for self-exploration. The assignments provide are a good hands-on experience as well !!

by jay s

Jul 15, 2017

Excellent lectures, good exercises to reinforce the material, and absolutely loved the explanations of the sophisticated mathematical models that made them more lucid and easy to digest.

by Keary P

Mar 24, 2019

Great for high level concepts and practical applications of machine learning. After taking this course I feel more confident in my ability to work on real world machine learning tasks.

by Andrew G

Aug 27, 2017

A lot of techniques packed into a relatively short course. Weeks 2 & 4 are noticably tougher than the other two, so allow plenty of extra time for assignment and quiz in those 2 weeks.

by Tian L

Apr 20, 2020

it is a great course that covers the most important basics of the "traditional" machine learning and helps me build a solid foundation for more advanced machine learning topics later.

by Alan H

May 08, 2019

Great course for the applications of machine learning. While I wouldn't recommend for someone with no ML experience, this was a great course for an R user trying to learn more python!

by Rami A T

Jun 06, 2017

Very helpful and well-structured course, clear lecturing, and high-level assignments. I hope, however, if it can be offered another course specialized in unsupervised learning in ML.