Chevron Left
Reproducible Research に戻る

ジョンズ・ホプキンズ大学(Johns Hopkins University) による Reproducible Research の受講者のレビューおよびフィードバック

4.6
4,113件の評価

コースについて

This course focuses on the concepts and tools behind reporting modern data analyses in a reproducible manner. Reproducible research is the idea that data analyses, and more generally, scientific claims, are published with their data and software code so that others may verify the findings and build upon them. The need for reproducibility is increasing dramatically as data analyses become more complex, involving larger datasets and more sophisticated computations. Reproducibility allows for people to focus on the actual content of a data analysis, rather than on superficial details reported in a written summary. In addition, reproducibility makes an analysis more useful to others because the data and code that actually conducted the analysis are available. This course will focus on literate statistical analysis tools which allow one to publish data analyses in a single document that allows others to easily execute the same analysis to obtain the same results....

人気のレビュー

AA

2016年2月12日

My favorite course, at least it gives me an argument why scripted statistics is awesome and can be applied to a number of data related activities. Recycling chunks of code has proven useful to me.

RR

2020年8月19日

A very important course that greatly improved my ability to communicate the findings of any sort of data analysis that I perform. This is a critical skill to acquire to "deliver the means."

フィルター:

Reproducible Research: 201 - 225 / 580 レビュー

by Carl W

2018年7月9日

Knitr was a nice tool to learn. I can see it being useful.

by V P

2018年7月3日

most nicely designed course in the specialization loved it

by Andrew

2019年4月7日

One of my favorite courses in the specialization so far.

by Andreas K

2016年12月12日

best course so far in the data scienist course package!

by James W

2016年10月31日

This course helped me very much with my current career.

by Md G M

2018年7月30日

Course contents are very good and easy to understands.

by Massimo M

2018年2月15日

Very nice course, easy to follow and very well taught.

by Giovanni M C V

2016年2月16日

Excellent course with great didactic. Congratulations!

by Chanpreet K

2018年12月30日

Good course content. All things explained quite well.

by Dewald O

2018年10月31日

Such a great course! The instructors are really good.

by César A

2020年6月16日

Very nice program and a lot of practical exercices

by Mohammad A

2018年7月20日

Great course , very informative and well organized

by Lei S

2017年12月27日

Only thing: maybe some lectures should be updated.

by phani v k

2017年1月7日

This is a very good course for a begineer like me.

by Laro N P

2018年5月2日

Good course. Every new course is a new challenge.

by Shivanand R K

2016年6月21日

Great and Excellent thoughts and course material.

by מיקי כ

2020年8月18日

Great course. very important for any researcher.

by Trung N T

2017年5月8日

The course very good for beginner data scientist

by Damian S

2021年11月16日

Interesting course with well prepared exercises

by ILLYA B

2020年10月12日

The best course of John Hopkins Specialization!

by Akram N

2019年5月2日

Very fruitful. I enjoyed this lesson very much.

by Jamie M

2018年10月26日

Good course. Does exactly what it says it does.

by Utku K

2016年11月14日

Good lesson, about an interesting topic for me.

by Predrag M

2016年3月13日

One of the best courses in this specialization.

by Bipin K

2016年2月10日

great one to know how about researches are done