このコースについて
8,617 最近の表示

次における6の3コース

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

約22時間で修了

推奨:4 weeks of study, 2-4 hours/week...

英語

字幕:英語

習得するスキル

Serial Line Internet Protocol (SLIP)RoboticsRobotMatlab

次における6の3コース

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

約22時間で修了

推奨:4 weeks of study, 2-4 hours/week...

英語

字幕:英語

シラバス - 本コースの学習内容

1
3時間で修了

Introduction: Motivation and Background

We start with a general consideration of animals, the exemplar of mobility in nature. This leads us to adopt the stance of bioinspiration rather than biomimicry, i.e., extracting principles rather than appearances and applying them systematically to our machines. A little more thinking about typical animal mobility leads us to focus on appendages – limbs and tails – as sources of motion. The second portion of the week offers a bit of background on the physical and mathematical foundations of limbed robotic mobility. We start with a linear spring-mass-damper system and consider the second order ordinary differential equation that describes it as a first order dynamical system. We then treat the simple pendulum – the simplest revolute kinematic limb – in the same manner just to give a taste for the nature of nonlinear dynamics that inevitably arise in robotics. We’ll finish with a treatment of stability and energy basins. Link to bibliography: https://www.coursera.org/learn/robotics-mobility/resources/pqYOc

...
8件のビデオ (合計104分), 3 readings, 5 quizzes
8件のビデオ
1.0.0 What you will learn this week3 分
1.1.1 Why and how do animals move?10 分
1.1.2 Bioinspiration9 分
1.1.3 Legged Mobility: dynamic motion and the management of energy17 分
1.2.1 Review LTI Mechanical Dynamical Systems26 分
1.2.2 Introduce Nonlinear Mechanical Dynamical Systems: the dissipative pendulum in gravity22 分
1.2.3 Linearization & Normal Forms11 分
3件の学習用教材
Setting up your MATLAB environment10 分
MATLAB Tutorial I - Getting Started with MATLAB10 分
MATLAB Tutorial II - Programming10 分
5の練習問題
1.1.1 Why and how do animals move8 分
1.1.2 Bioinspiration8 分
1.1.3 Legged Mobility: dynamic motion and the management of energy8 分
1.2.2 Nonlinear mechanical systems8 分
1.2.3 Linearizations4 分
2
2時間で修了

Behavioral (Templates) & Physical (Bodies)

We’ll start with behavioral components that take the form of what we call “templates:” very simple mechanisms whose motions are fundamental to the more complex limbed strategies employed by animal and robot locomotors. We’ll focus on the “compass gait” (the motion of a two spoked rimless wheel) and the spring loaded inverted pendulum – the abbreviated versions of legged walkers and legged runners, respectively.We’ll then shift over to look at the physical components of mobility. We’ll start with the notion of physical scaling laws and then review useful materials properties and their associated figures of merit. We’ll end with a brief but crucial look at the science and technology of actuators – the all important sources of the driving forces and torques in our robots. Link to bibliography: https://www.coursera.org/learn/robotics-mobility/resources/pqYOc

...
8件のビデオ (合計63分), 7 quizzes
8件のビデオ
2.1.1 Walking like a rimless wheel15 分
2.1.2 Running like a spring-loaded pendulum11 分
2.1.3 Controlling the spring-loaded inverted pendulum8 分
2.2.1 Metrics and Scaling: mass, length, strength3 分
2.2.2 Materials, manufacturing, and assembly5 分
2.2.3 Design: figures of merit, robustness3 分
2.3.1 Actuator technologies10 分
7の練習問題
2.1.1 Walking like a rimless wheel8 分
2.1.2 Running like a spring-loaded pendulum8 分
2.1.3 Controlling the spring-loaded inverted pendulum8 分
2.2.1 Metrics and Scaling: mass, length, strength8 分
2.2.2 Materials, manufacturing, and assembly8 分
2.2.3 Design: figures of merit, robustness12 分
2.3.1 Actuator technologies8 分
3
2時間で修了

Anchors: Embodied Behaviors

Now we’ll put physical links and joints together and consider the geometry and the physics required to understand their coordinated motion. We’ll learn about the geometry of degrees of freedom. We’ll then go back to Newton and learn a compact way to write down the physical dynamics that describes the positions, velocities and accelerations of those degrees of freedom when forced by our actuators.Of course there are many different ways to put limbs and bodies together: again, the animals can teach us a lot as we consider the best morphology for our limbed robots. Sprawled posture runners like cockroaches have six legs which typically move in a stereotyped pattern which we will consider as a model for a hexapedal machine. Nature’s quadrupeds have their own varied gait patterns which we will match up to various four-legged robot designs as well. Finally, we’ll consider bipedal machines, and we’ll take the opportunity to distinguish human-like robot bipeds that are almost foredoomed to be slow quasi-static machines from a number of less animal-like bipedal robots whose embrace of bioinspired principles allows them to be fast runners and jumpers. Link to bibliography: https://www.coursera.org/learn/robotics-mobility/resources/pqYOc

...
6件のビデオ (合計55分), 6 quizzes
6件のビデオ
3.1.1 Review of kinematics7 分
3.1.2 Introduction to dynamics and control15 分
3.2.1 Sprawled posture runners10 分
3.2.2 Quadrupeds6 分
3.2.3 Bipeds9 分
6の練習問題
3.1.1 Review of kinematics (MATLAB)8 分
3.1.2 Introduction to dynamics and control6 分
3.2.1 Sprawled posture runners8 分
3.2.2 Quadrupeds8 分
3.2.3 Bipeds6 分
Simply stabilized SLIP (MATLAB)12 分
4
2時間で修了

Composition (Programming Work)

We now introduce the concept of dynamical composition, reviewing two types: a composition in time that we term “sequential”; and composition in space that we call “parallel.” We’ll put a bit more focus into that last concept, parallel composition and review what has been done historically, and what can be guaranteed mathematically when the simple templates of week 2 are tasked to worked together “in parallel” on variously more complicated morphologies. The final section of this week’s lesson brings you to the horizons of research into legged mobility. We give examples of how the same composition can be anchored in different bodies, and, conversely, how the same body can be made to run using different compositions. We will conclude with a quick look at the ragged edge of what is known about transitional behaviors such as leaping. Link to bibliography: https://www.coursera.org/learn/robotics-mobility/resources/pqYOc

...
10件のビデオ (合計75分), 10 quizzes
10件のビデオ
4.1.1 Sequential and Parallel Composition4 分
4.2.1 Why is parallel hard?8 分
(SUPPLEMENTARY) 4.2.2 SLIP as a parallel vertical hopper and rimless wheel6 分
4.2.3a RHex: A Simple & Highly Mobile Biologically Inspired Hexapod Runner16 分
(SUPPLEMENTARY) 4.2.3b Clocked RHex gaits11 分
4.3.1 Compositions of vertical hoppers4 分
4.3.2 Same composition, different bodies8 分
4.3.3 Same body, different compositions4 分
4.3.4 Transitions: RHex, Jerboa, and Minitaur leaping5 分
10の練習問題
4.1.1 Sequential and Parallel Composition6 分
4.2.1 Why is parallel hard?6 分
(SUPPLEMENTARY) 4.2.2 SLIP as a parallel composition6 分
4.2.3a RHex4 分
(SUPPLEMENTARY) 4.2.3b Clocked RHex gaits4 分
4.3.1 Compositions of vertical hoppers10 分
MATLAB: composition of vertical hoppers12 分
4.3.2 Same composition, different bodies6 分
4.3.3 Same body, different compositions4 分
4.3.4 Transitions8 分
3.9
110件のレビューChevron Right

60%

コース終了後に新しいキャリアをスタートした

43%

コースが具体的なキャリアアップにつながった

Robotics: Mobility からの人気レビュー

by TMJun 5th 2017

The material itself is worth a few stars. Clearly lots of work has gone into making some interesting interactive matlab demos. some of the quizzes are unnecessarily confusing.

by PRAug 21st 2017

Very vast and intuitive course.I found all the information required to design my own legged robot ! I will try and design my own . Thank you so much !

講師

Avatar

Daniel E. Koditschek

Professor of Electrical and Systems Engineering
School of Engineering and Applied Science

ペンシルベニア大学(University of Pennsylvania)について

The University of Pennsylvania (commonly referred to as Penn) is a private university, located in Philadelphia, Pennsylvania, United States. A member of the Ivy League, Penn is the fourth-oldest institution of higher education in the United States, and considers itself to be the first university in the United States with both undergraduate and graduate studies. ...

ロボット工学の専門講座について

The Introduction to Robotics Specialization introduces you to the concepts of robot flight and movement, how robots perceive their environment, and how they adjust their movements to avoid obstacles, navigate difficult terrains and accomplish complex tasks such as construction and disaster recovery. You will be exposed to real world examples of how robots have been applied in disaster situations, how they have made advances in human health care and what their future capabilities will be. The courses build towards a capstone in which you will learn how to program a robot to perform a variety of movements such as flying and grasping objects....
ロボット工学

よくある質問

  • 修了証に登録すると、すべてのビデオ、テスト、およびプログラミング課題(該当する場合)にアクセスできます。ピアレビュー課題は、セッションが開始してからのみ、提出およびレビューできます。購入せずにコースを検討することを選択する場合、特定の課題にアクセスすることはできません。

  • コースに登録する際、専門講座のすべてのコースにアクセスできます。コースの完了時には修了証を取得できます。電子修了証が成果のページに追加され、そこから修了証を印刷したり、LinkedInのプロフィールに追加したりできます。コースの内容の閲覧のみを希望する場合は、無料でコースを聴講できます。

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。