Chevron Left
Big Data Analysis with Scala and Spark に戻る

スイス連邦工科大学ローザンヌ校(École Polytechnique Fédérale de Lausanne) による Big Data Analysis with Scala and Spark の受講者のレビューおよびフィードバック

4.7
2,551件の評価

コースについて

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1....

人気のレビュー

CC

2017年6月7日

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

BP

2019年11月28日

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

フィルター:

Big Data Analysis with Scala and Spark: 251 - 275 / 506 レビュー

by Devaki B

2017年4月15日

by Harshad H

2019年10月30日

by David F S

2019年1月14日

by Husain K

2017年5月7日

by samy k

2017年3月21日

by Robert M

2019年2月11日

by shubham m

2018年7月10日

by abdhesh

2017年12月31日

by Jeroen M

2017年4月9日

by Hong C

2020年4月14日

by Denis L

2018年12月5日

by Wang Z

2019年10月30日

by Muhammad B

2020年6月10日

by Arnaud J

2017年6月2日

by Daniel D

2017年4月20日

by Olivier L

2019年11月29日

by Marc K

2018年9月8日

by Joaquin D R

2019年9月25日

by jiajie

2017年7月8日

by César A

2017年3月29日

by Hari K N

2020年7月22日

by Varlamova E

2019年3月10日

by Msellek A

2019年1月26日

by Jose M N

2018年5月28日

by Srinivasa R M

2017年9月13日