Chevron Left
Big Data Analysis with Scala and Spark に戻る

スイス連邦工科大学ローザンヌ校(École Polytechnique Fédérale de Lausanne) による Big Data Analysis with Scala and Spark の受講者のレビューおよびフィードバック

4.7
2,551件の評価

コースについて

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1....

人気のレビュー

CC

2017年6月7日

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

BP

2019年11月28日

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

フィルター:

Big Data Analysis with Scala and Spark: 226 - 250 / 506 レビュー

by Ravi S

2017年7月6日

by Nikhil R

2019年11月9日

by Art P

2018年3月10日

by Evaldas M

2017年4月8日

by GIORGIO L

2020年5月27日

by Charmy G

2020年1月13日

by Ismail A I

2017年4月9日

by sheng w

2019年1月10日

by Pushkin G

2018年5月6日

by John D

2017年7月13日

by David A

2020年4月28日

by Mohamed B

2020年6月30日

by Anand S

2018年8月14日

by Oleg O

2017年7月29日

by Ravikumar

2017年4月9日

by Dmitriy K

2017年3月20日

by Robson R S P

2020年4月12日

by Alexey A

2019年7月13日

by 李东恒

2020年1月24日

by Yuri R

2019年10月24日

by Cliff R

2018年7月22日

by Kovalenko S

2017年7月17日

by Adrien C

2017年6月29日

by Juan L R A

2017年6月19日

by Florian B

2017年11月18日