Chevron Left
Big Data Analysis with Scala and Spark に戻る

スイス連邦工科大学ローザンヌ校(École Polytechnique Fédérale de Lausanne) による Big Data Analysis with Scala and Spark の受講者のレビューおよびフィードバック

4.7
2,552件の評価

コースについて

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1....

人気のレビュー

BP

2019年11月28日

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

CC

2017年6月7日

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

フィルター:

Big Data Analysis with Scala and Spark: 76 - 100 / 506 レビュー

by Ignacio G S

2021年5月5日

by Luca D S

2017年12月1日

by Mani P

2017年4月9日

by Piotr A

2017年3月16日

by Paweł W

2020年4月3日

by Mykola S

2017年6月30日

by Fernando

2018年6月6日

by Seleznev A

2020年5月9日

by Mohamed A T

2019年8月6日

by Andronik

2017年6月15日

by El G T

2019年10月27日

by Seongsan K

2018年3月9日

by Walter D

2018年1月1日

by Walter Z

2017年4月2日

by Zeb S

2019年10月16日

by Antonio A

2017年10月20日

by Shweta P

2020年7月18日

by Jeffrey S

2017年4月9日

by Grzegorz G

2017年3月21日

by Bulent B

2019年8月7日

by Konstantin K

2017年4月12日

by Liqun Y

2017年6月29日

by Shane

2018年5月10日

by John V M

2017年4月24日

by Bennie K

2017年10月15日