Chevron Left
Big Data Analysis with Scala and Spark に戻る

スイス連邦工科大学ローザンヌ校(École Polytechnique Fédérale de Lausanne) による Big Data Analysis with Scala and Spark の受講者のレビューおよびフィードバック

4.7
2,551件の評価

コースについて

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1....

人気のレビュー

CC

2017年6月7日

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

BP

2019年11月28日

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

フィルター:

Big Data Analysis with Scala and Spark: 201 - 225 / 506 レビュー

by Kyle A

2019年10月23日

by Khaled J A

2019年9月28日

by Carlos S

2018年1月23日

by Martin P

2017年8月22日

by Martin M

2020年5月2日

by Vishwanath G

2018年3月17日

by Milorad T

2020年4月9日

by Johan R

2018年12月28日

by Eike H

2020年3月16日

by Gao Y

2017年4月4日

by Yogen R

2020年3月28日

by Navjinder V

2018年12月18日

by lu

2017年9月16日

by Gary Z

2017年4月9日

by Janis S

2020年10月7日

by Konrad C

2019年1月27日

by Natalija I

2018年9月26日

by Deleted A

2017年8月21日

by Parker G

2017年4月10日

by Carsten I

2019年6月30日

by Murat A

2019年1月19日

by Manoj K

2017年8月27日

by Sivakumar P

2018年11月29日

by Giang N

2021年9月23日

by Ravishankar N N

2017年9月14日