Statistical inference is the process of drawing conclusions about populations or scientific truths from data. There are many modes of performing inference including statistical modeling, data oriented strategies and explicit use of designs and randomization in analyses. Furthermore, there are broad theories (frequentists, Bayesian, likelihood, design based, …) and numerous complexities (missing data, observed and unobserved confounding, biases) for performing inference. A practitioner can often be left in a debilitating maze of techniques, philosophies and nuance. This course presents the fundamentals of inference in a practical approach for getting things done. After taking this course, students will understand the broad directions of statistical inference and use this information for making informed choices in analyzing data.
提供:
このコースについて
学習内容
Understand the process of drawing conclusions about populations or scientific truths from data
Describe variability, distributions, limits, and confidence intervals
Use p-values, confidence intervals, and permutation tests
Make informed data analysis decisions
習得するスキル
- Statistics
- Statistical Inference
- Statistical Hypothesis Testing
提供:

ジョンズ・ホプキンズ大学(Johns Hopkins University)
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.
シラバス - 本コースの学習内容
Week 1: Probability & Expected Values
This week, we'll focus on the fundamentals including probability, random variables, expectations and more.
Week 2: Variability, Distribution, & Asymptotics
We're going to tackle variability, distributions, limits, and confidence intervals.
Week: Intervals, Testing, & Pvalues
We will be taking a look at intervals, testing, and pvalues in this lesson.
Week 4: Power, Bootstrapping, & Permutation Tests
We will begin looking into power, bootstrapping, and permutation tests.
レビュー
- 5 stars57.41%
- 4 stars23.20%
- 3 stars10.10%
- 2 stars4.54%
- 1 star4.72%
統計的推論 からの人気レビュー
Course is compressed and good to learn in short span. The illustrations and projects are really helpful to learn the concepts and implement. I really enjoyed through the course
The strategy for model selection in multivariate environment should have been explained with an example. This will make the model selection process, interaction and its interpretation more clear.
Course is compressed with lots of statistical concepts. Which is very good as most must know concepts are imparted. Lots of extra reading is required to gain all insights. Very good motivating start .
For starters, it will demand a lot of out of class studies. It took me three months to go through the basics in Khan Academy before attempting it - and after that it was straight forward.
よくある質問
いつ講座や課題にアクセスできるようになりますか?
この専門講座をサブスクライブすると何を行うことができるようになりますか?
学資援助はありますか?
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。