Chevron Left
Statistics for Data Science with Python に戻る

IBM Skills Network による Statistics for Data Science with Python の受講者のレビューおよびフィードバック

4.6
220件の評価

コースについて

This Statistics for Data Science course is designed to introduce you to the basic principles of statistical methods and procedures used for data analysis. After completing this course you will have practical knowledge of crucial topics in statistics including - data gathering, summarizing data using descriptive statistics, displaying and visualizing data, examining relationships between variables, probability distributions, expected values, hypothesis testing, introduction to ANOVA (analysis of variance), regression and correlation analysis. You will take a hands-on approach to statistical analysis using Python and Jupyter Notebooks – the tools of choice for Data Scientists and Data Analysts. At the end of the course, you will complete a project to apply various concepts in the course to a Data Science problem involving a real-life inspired scenario and demonstrate an understanding of the foundational statistical thinking and reasoning. The focus is on developing a clear understanding of the different approaches for different data types, developing an intuitive understanding, making appropriate assessments of the proposed methods, using Python to analyze our data, and interpreting the output accurately. This course is suitable for a variety of professionals and students intending to start their journey in data and statistics-driven roles such as Data Scientists, Data Analysts, Business Analysts, Statisticians, and Researchers. It does not require any computer science or statistics background. We strongly recommend taking the Python for Data Science course before starting this course to get familiar with the Python programming language, Jupyter notebooks, and libraries. An optional refresher on Python is also provided. After completing this course, a learner will be able to: ✔Calculate and apply measures of central tendency and measures of dispersion to grouped and ungrouped data. ✔Summarize, present, and visualize data in a way that is clear, concise, and provides a practical insight for non-statisticians needing the results. ✔Identify appropriate hypothesis tests to use for common data sets. ✔Conduct hypothesis tests, correlation tests, and regression analysis. ✔Demonstrate proficiency in statistical analysis using Python and Jupyter Notebooks....

人気のレビュー

JL

2021年1月19日

The final assignment is very well designed, I was able to review the entire course material and consolidate the learning. I have now a good understanding of hypothesis testing.

HD

2021年1月13日

A well structured course, simple and direct to the point, with a little of exercising you'll come out with a huge understanding of the statistical concepts.

フィルター:

Statistics for Data Science with Python: 26 - 50 / 56 レビュー

by Vaseekaran V

2021年5月13日

by HAFED-EDDINE B

2021年12月15日

by Sunny .

2021年4月1日

by 佐藤淳一

2021年1月29日

by vijay k A

2021年6月23日

by Ankit G

2022年4月15日

by Akhas R

2021年3月20日

by Md. A I

2022年3月15日

by ALEXANDRE R P

2022年3月17日

by Htet A L T

2021年7月16日

by Usama G

2022年6月13日

by André J A

2021年7月22日

by Virginia B

2022年4月4日

by Pritesh V

2022年8月25日

by Heinz D

2021年2月7日

by Andreas F

2021年2月21日

by George P

2022年4月18日

by Klemen V

2021年4月23日

by Michel M

2022年4月28日

by Akshay K

2021年11月18日

by Omar A

2021年4月5日

by Thomas S

2021年3月2日

by STEPHEN E

2021年8月31日

by Elizabeth T

2021年6月15日

by Lucian P

2022年1月18日