The capstone project will be an analysis using R that answers a specific scientific/business question provided by the course team. A large and complex dataset will be provided to learners and the analysis will require the application of a variety of methods and techniques introduced in the previous courses, including exploratory data analysis through data visualization and numerical summaries, statistical inference, and modeling as well as interpretations of these results in the context of the data and the research question. The analysis will implement both frequentist and Bayesian techniques and discuss in context of the data how these two approaches are similar and different, and what these differences mean for conclusions that can be drawn from the data.
提供:
このコースについて
受講生の就業成果
17%
33%
17%
習得するスキル
受講生の就業成果
17%
33%
17%
提供:

デューク大学(Duke University)
Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world.
シラバス - 本コースの学習内容
About the Capstone Project
Welcome to the capstone project! This week's content is an introduction to the project assignment and goals. The readings in this week will introduce the data set that you will be analyzing for your project and the specific questions you will answer using data analysis techniques we learned in the previous courses. It is important to understand what we will be doing in the course before jumping into the detailed analysis. So we encourage you to start with the first lecture to get the big picture, and then delve into the specifics of the analysis. Enjoy, and good luck! Remember, if you have questions, you can post them on the discussion forums.
Exploratory Data Analysis (EDA)
This week you will work on conducting an exploratory analysis of the housing data. Exploratory analysis is an essential first step for familiarizing yourself with and understanding the data.
EDA and Basic Model Selection - Submission
This week we will dig deeper into our exploratory data analysis of the data. We now have all the information and data necessary to perform a deep dive into the EDA and it is time start your initial analysis report! We encourage you to start your analysis report (presented in peer-review format next week) early so you will have enough time to complete it. You will conduct exploratory data analysis, model selection, and model evaluation, and then complete a written report which answers several questions which will guide you through the process. This report will be your first peer-review assignment in this course.
EDA and Basic Model Selection - Evaluation
Great work so far! We hope you will also learn as much from evaluating your peers' work as completing your own assignment. Happy learning!
レビュー
STATISTICS WITH R CAPSTONE からの人気レビュー
I think this is a very advisable course as a whole, The capstone offers a good occasion to put into practice what has been learned during the four previous courses and also works as a sort of review.
Great course, learned a lot and got me started on another project that I've turned into a really nice portfolio item. I feel much more comfortable with R and statistics principles.
Good, challenging problem sets. Final project is interesting enough, albeit perhaps could have required a bit more in the final submission to make it really rigorous.
Amazing capstone. I've learned many things in this specialization. Just try to change the sudden frantic pace for Bayesian Statistics and it's gonna be perfect!
Statistics with R専門講座について
In this Specialization, you will learn to analyze and visualize data in R and create reproducible data analysis reports, demonstrate a conceptual understanding of the unified nature of statistical inference, perform frequentist and Bayesian statistical inference and modeling to understand natural phenomena and make data-based decisions, communicate statistical results correctly, effectively, and in context without relying on statistical jargon, critique data-based claims and evaluated data-based decisions, and wrangle and visualize data with R packages for data analysis.

よくある質問
いつ講座や課題にアクセスできるようになりますか?
この専門講座をサブスクライブすると何を行うことができるようになりますか?
Is financial aid available?
Will I receive a transcript from Duke University for completing this course?
さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。