Chevron Left
Обучение на размеченных данных に戻る

モスクワ物理工科大学(Moscow Institute of Physics and Technology) による Обучение на размеченных данных の受講者のレビューおよびフィードバック

4.8
2,405件の評価
322件のレビュー

コースについて

Обучение на размеченных данных или обучение с учителем – это наиболее распространенный класс задач машинного обучения. К нему относятся те задачи, где нужно научиться предсказывать некоторую величину для любого объекта, имея конечное число примеров. Это может быть предсказание уровня пробок на участке дороги, определение возраста пользователя по его действиям в интернете, предсказание цены, по которой будет куплена подержанная машина. В этом курсе вы научитесь формулировать и, конечно, решать такие задачи. В центре нашего внимания будут успешно применяемые на практике алгоритмы классификации и регрессии: линейные модели, нейронные сети, решающие деревья и так далее. Особый акцент мы сделаем на такой мощной технике как построение композиций, которая позволяет существенно повысить качество отдельных алгоритмов и широко используется при решении прикладных задач. В частности, мы узнаем про случайные леса и про метод градиентного бустинга. Построение предсказывающих алгоритмов — это лишь часть работы при решении задачи анализа данных. Мы разберемся и с другими этапами: оценивание обобщающей способности алгоритмов, подбор параметров модели, выбор и подсчет метрик качества. Видео курса разработаны на Python 2. Задания и ноутбуки к ним адаптированы к Python 3....

人気のレビュー

AG

Nov 15, 2019

Очень интересный и более сложный курс по сравнению с предыдущим! Но!! Хотелось бы обновлений и дополнений по нейросетям (мало информации), а также не затронут TensorFlow, что не очень хорошо!

MM

Dec 30, 2016

Спасибо большое за курс!\n\nСистематизировал и вспомнил свои знания по линейным моделям, узнал много нового и полезного про остальные модели, поработал наконец с нейронными сетями!

フィルター:

Обучение на размеченных данных: 251 - 275 / 304 レビュー

by Dmitrijs B

Sep 27, 2020

Курс отлично сбалансирован по содержанию в нем теории и практики. Он прекрасно подойдет для тех кто хочет узнать математику ML и практичесткое применение методов. Однако он может не подойти для тех кто хочет ориентироваться исключительно на практику. Ставлю только 4 зведы так как некоторые практические части давно устарели и используют не актуальные Python библиотеки, но это небольшая проблема.

by Gennadiy B

Jan 13, 2020

В целом курс хороший, хотя теория рассказана поверхностно, это оставляет ощущение неудовлетворенности и неуверенности в том, что понял материал до конца. Это скорее выглядит как справка, которую принимаешь на веру. Задания выглядят как рецепт в кулинарной книги, но это хорошо. При желании можно разобраться в теме, подтянув знания по математике, жаль только литература вся на английском.

by Sergey O

Dec 10, 2019

Курс хороший. Познакомитесь с решающими деревьями, случанйым лесом, бустингом. Но вот некоторые блоки - нейронки, байесовские методы - на мой взгляд даны очень уж вкратце. Как обзор - подойдет, но в нем немного смысла, ведь мы все равно забудем эти вещи.

Я все равно рад, что прошел "Обучение на размеченных данных". Думаю, стоит погружаться дальше.

by Artem S

Sep 22, 2020

Курс хороший, объясняется доступно, мне показался легче первого, спасибо преподавателям курса за отличные ноутбуки заданий первых недель, я получил удовольствие от их выполнения. последняя неделя испортила впечатление, если так говорить о нейросетях, то уж лучше, наверное вообще не говорить.

by Evgenii K

Mar 14, 2020

Хороший курс и задания интересные. Подкачала пятая неделя - как будто бы в последних блоках за три подхода по полчаса пытаются рассказать про нейронные сети, байесовские методы и метрические классификаторы, получается в итоге очень скомкано. С нейронками так вообще провал

by Domnin V

Jan 27, 2019

Любопытный вводный курс, дающий мне как новичку представление о сложившейся терминологии, базовых инструментах, а главное широте и объеме темы. Тема огромна.

Спасибо инструкторам за энтузиазм и информативность изложения. Получилось точно не хуже, чем AWS тренинг.

by Ivan O

May 02, 2018

Хороший курс, здесь совсем мало нейронок, но очень хорошее введение в целом в алгоритмы машинного обучения. На практике может занять больше заявленных 5 недель, ну и встречаются задания в которых нужно поплясать с бубном, чтобы ответ приняли.

by Alex Z

May 15, 2020

Курс неравномерный. Задания различаются по сложности очень сильно. Про нейронки очень сжато рассказано. Может , дальше будет. Если у вас нет хорошего знания мат.статистики, ищите на ютубе лекции, преподы курса не всегда хорошо объясняют.

by Gulnur B

Apr 12, 2019

Отличный курс! Расстроила только последняя неделя: неудачный выбор лектора в первом разделе; недостаток взаимосвязанности с предыдущим материалом; скомканность достаточно интересных тем. Тем не менее, огромное спасибо за вашу работу!

by Беденко А А

Jan 23, 2018

Жалко, что нейронные сети остались за бортом. С другой стороны - полученных знаний вполне хватает чтобы понимать учебники по НС. Так что наверстаем. 4 первых недели прекрасны. Последняя неделя - IMHO винегрет. Потому 4 из 5.

by Шаланкин М Д

Mar 14, 2019

Хороший сложный курс, насыщенная программа и интересные задания.UPD: (прошёл 5 курсов из этой специализации, никому не советую проходить больше двух первых, потому что цена - качество не соответсвуют)

by Stanislav

Feb 22, 2018

Замечательный курс, узнал много важных вещей. Но последняя неделя показалась несколько поверхностной. Надеюсь, что её материал будет рассмотрен подробнее в следующих курсах специализации.

by Радионов А

Sep 20, 2017

Курс отличный: грамотно подаются практические аспекты обучения с учителем. Правда, впечатление несколько портит использование Python 2 и странное задание с PyBrain. Но это не критично.

by Vladimir Y

Feb 14, 2018

Хороший курс, но есть ряд замечаний к практическим заданиям. Мне кажется они нуждаются в дополнительной проработке и им необходима более широкая лекционная поддержка.

by Волков П М

Feb 22, 2020

Вторая часть курса явно не так хорошо нормирована. Задания стали куда более трудоемкими и при этом их количество так же увеличилось. Но за теорию спасибо

by Dmitriy R

Jun 28, 2017

Практическая работа по нейронным сетям не дала никаких навыков по работе с ними. Просто copy-paste предыдущих строчек кода в этом же ipython notebook.

by Vadim T

Mar 25, 2017

Велика разница между преподавателями. Особенно неудачно, на мой взгляд, освещались темы Байесовской классификации и регресии и метрические алгоритмы

by Martynov E E

Aug 03, 2020

Тяжко разбираться в теорвере, если воспринимать всю даваемую в курсе математику всерьез. Хотелось бы, чтобы было больше рекомендаций по литературе.

by Alibek U

May 05, 2020

Все хорошо в целом - из минусов только то, что было задание не адаптированное для Python 3 (5-я неделя, 1-е задание )

by Максим Ф

Aug 25, 2019

Не все вопросы были достаточно понятными, хотелось бы более нормальных вопросов. В остальном всё очень круто. Спасибо

by Nikolay S

Mar 24, 2018

Некоторые задания были плохо составлены. Было слишком много ошибок/багов/опечаток. В остальном было полезно.

by Arsenii M

Jul 22, 2017

В конеце курса немного скомканно подаётся материал, особенно на пятой неделе. В остальном всё отлично!

by Polovinkin A

Oct 08, 2017

- балл за наличие ошибок и недосказанностей в заданиях спустя огромное время с момента старта курса

by Valerii B

Mar 25, 2020

Хороший познавательный курс, но некоторые практические задания плохо поддерживаются и устарели.

by Maksim S

Nov 25, 2019

Коллеги, данный курс можно было бы сделать и подлиннее) Особенно 5ю неделю) А так все ок! )