Recent years have seen a dramatic growth of natural language text data, including web pages, news articles, scientific literature, emails, enterprise documents, and social media such as blog articles, forum posts, product reviews, and tweets. Text data are unique in that they are usually generated directly by humans rather than a computer system or sensors, and are thus especially valuable for discovering knowledge about people’s opinions and preferences, in addition to many other kinds of knowledge that we encode in text.
提供:


このコースについて
習得するスキル
- Information Retrieval (IR)
- Document Retrieval
- Machine Learning
- Recommender Systems
提供:

イリノイ大学アーバナ・シャンペーン校(University of Illinois at Urbana-Champaign)
The University of Illinois at Urbana-Champaign is a world leader in research, teaching and public engagement, distinguished by the breadth of its programs, broad academic excellence, and internationally renowned faculty and alumni. Illinois serves the world by creating knowledge, preparing students for lives of impact, and finding solutions to critical societal needs.
シラバス - 本コースの学習内容
Orientation
You will become familiar with the course, your classmates, and our learning environment. The orientation will also help you obtain the technical skills required for the course.
Week 1
During this week's lessons, you will learn of natural language processing techniques, which are the foundation for all kinds of text-processing applications, the concept of a retrieval model, and the basic idea of the vector space model.
Week 2
In this week's lessons, you will learn how the vector space model works in detail, the major heuristics used in designing a retrieval function for ranking documents with respect to a query, and how to implement an information retrieval system (i.e., a search engine), including how to build an inverted index and how to score documents quickly for a query.
Week 3
In this week's lessons, you will learn how to evaluate an information retrieval system (a search engine), including the basic measures for evaluating a set of retrieved results and the major measures for evaluating a ranked list, including the average precision (AP) and the normalized discounted cumulative gain (nDCG), and practical issues in evaluation, including statistical significance testing and pooling.
Week 4
In this week's lessons, you will learn probabilistic retrieval models and statistical language models, particularly the detail of the query likelihood retrieval function with two specific smoothing methods, and how the query likelihood retrieval function is connected with the retrieval heuristics used in the vector space model.
レビュー
- 5 stars65.45%
- 4 stars23.98%
- 3 stars6.82%
- 2 stars1.65%
- 1 star2.09%
TEXT RETRIEVAL AND SEARCH ENGINES からの人気レビュー
Interesting content
However the prof/instructor should practice not pausing so much when explaining the concepts/contents
Excellent Course for Computer Science Enthusiastic.
Must and Highly recommend course for all Computer Science and Information technology Aspirant
A bit difficult to complete as the Quiz questions were tougher. But when you go through all, you might feel good.
Course was well taught the instructor's explanation of the topics was very comprehensive. Overall satisfied with the experience
データマイニング 専門講座について
The Data Mining Specialization teaches data mining techniques for both structured data which conform to a clearly defined schema, and unstructured data which exist in the form of natural language text. Specific course topics include pattern discovery, clustering, text retrieval, text mining and analytics, and data visualization. The Capstone project task is to solve real-world data mining challenges using a restaurant review data set from Yelp.

よくある質問
いつ講座や課題にアクセスできるようになりますか?
この専門講座をサブスクライブすると何を行うことができるようになりますか?
学資援助はありますか?
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。