Chevron Left
Поиск структуры в данных に戻る

モスクワ物理工科大学(Moscow Institute of Physics and Technology) による Поиск структуры в данных の受講者のレビューおよびフィードバック

4.7
1,097件の評価
110件のレビュー

コースについて

В машинном обучении встречаются задачи, где нужно изучить структуру данных, найти в них скрытые взаимосвязи и закономерности. Например, нам может понадобиться описать каждого клиента банка с помощью меньшего количества переменных — для этого можно использовать методы понижения размерности, основанные на матричных разложениях. Такие методы пытаются сформировать новые признаки на основе старых, сохранив как можно больше информации в данных. Другим примером может служить задача тематического моделирования, в которой для набора текстов нужно построить модель, объясняющую процесс формирования этих текстов из небольшого количества тем. Такие задачи назвают обучением без учителя. В отличие от обучения с учителем, в них не предполагают восстановление зависимости между объектами и целевой переменной. Из этого курса вы узнаете об алгоритмах кластеризации данных, с помощью которых, например, можно искать группы схожих клиентов мобильного оператора. Вы научитесь строить матричные разложения и решать задачу тематического моделирования, понижать размерность данных, искать аномалии и визуализировать многомерные данные. Задания и видео курса разработаны на Python 2....

人気のレビュー

PK

May 04, 2018

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

AA

Jan 09, 2017

Интересный курс, замечательные преподаватели. Есть моменты когда лекция довольно сложная, а тест простой, это оставляет тревожное ощущение недоученности :)

フィルター:

Поиск структуры в данных: 1 - 25 / 106 レビュー

by Шаланкин М Д

Mar 14, 2019

Курс достаточно старый, возникает много конфликтов версий, данные не обновляют. Ещё пока релевантная информация. UPD: (прошёл 5 курсов из этой специализации, никому не советую проходить больше двух первых, потому что цена - качество не соответсвуют)

by Konstantin A

Oct 31, 2018

Хорошая теоретическая основа, видео. Но задания все пора обновлять. Используются старые версии библиотек. В видео по установке и работе с библиотеками сильно устаревшая информация. Впрочем, это не сильно мешает понять тематическое моделирование.

by Мария Е Ч

Jul 25, 2018

Курс всем хорош, но три звезды только за задание с анализом текстов, где нужна была устаревшая версия gensim. Об этом не предупредили в тексте задачи, а грейдер не принимал ответы, выдаваемые новой версией. Потратила много времени.

by Timur B

May 13, 2018

Первые три недели интересные и методы рассмотрены важные. Тематическое моделирование, на мой взгляд, штука достаточно специфичная и многим она не понадобится совсем. Хотелось бы чего-то более общего. А так курс неплохой.

by Николай М

Jul 02, 2019

.

by Юрков А М

Jun 10, 2019

всё чаще появляются задания, где ответ зависит от версии библиотек

(хотелось бы чтоб грейдер принимал аналогичные ответы по заданиям из актуальных версий библиотек, а не 1-3 летней давности)

by Vsevolod K

May 23, 2019

Отличный и интересный курс. Только устарело задание на BigArtm. Не актуально видео, установить библиотеку самому не тривиально.

by Igor M

May 14, 2019

Отличный курс, хорошо изложена теория, практические задания интересны и хорошо помогают глубокому пониманию и усвоению материала.

by Жмылев О Н

May 13, 2019

Отличный курс!

by Горячев В Д

Apr 22, 2019

Все остальное отлично! Преподаватели хорошо рассказывают

Последнее задание c BiaARTM не удалось сделать, т.к. не смог установить данную библиотеку.

И ответы в некоторых заданиях пора изменить, т.к. бывает, что ответы Python 3 не принимаются(рассчитано ведь на Python 2.7)

by Sergey

Mar 19, 2019

Good course. Outstanding choice of topics. The most prominent techniques for clustering are covered in an easy-to-read way. I especially enjoyed the last week's theory on processing texts. It's awesome that the authors have included the references for further reading; I've downloaded those, and now I'm looking forward to read it soon.

As usual for this set of courses, I have mixed feelings with regard to the programming assignments. From those, I mostly mastered installing various versions of Python packages. On the other hand, it can be viewed as a nice hands-on training in using the built-in functions for clustering purposes, and running some general Python routines, such as list comprehension etc. This way, it totally fits my personal goals, and I'm moving on to the next course.

by Исаев Д В

Mar 11, 2019

Не понравилась неделя тематического моделирования.

by Майоров К Н

Mar 04, 2019

Хотел бы поблагодарить организаторов и преподавателей курса! Материал дается очень доступным и понятным способом! С нетерпением жду прохождения новых курсов специализации!

by Роман Ч

Jan 17, 2019

Было интересно.

by Petr K

Jan 10, 2019

По-моему, отличный курс.

Лично для меня последняя неделя по тематическому моделированию оказалась очень длительной для изучения (потратил пару недель, тогда как первые три недели прошел меньше чем за неделю). В принципе, совсем не обязательно было углубляться, но я не устоял перед соблазном и поразбирался с EM-алгоритмом на будущее.

Курс рекомендую - отлично дополняет второй курс про обучение с учителем. Посмотрим, что будет дальше.

by Artem D

Dec 20, 2018

Хороший курс, но без поиска доп. информации в интеренете почти по всем темам не обошлось.

С другой стороны, это естественный процесс при самообразовании. Так что все ок.

by Лавренов Д В

Dec 09, 2018

Доволен первыми тремя неделями и категорически недоволен последней, 4й. Как минимум из-за отвратительного задания по программированию.

Тем не менее, большое спасибо за курс!

by YaMolekula

Dec 08, 2018

Задания слишком простые

by Rustem Y

Dec 01, 2018

Классный курс, но есть проблемы с домашками

by Gorbatsevich I

Nov 07, 2018

ок

by Курочка А Ю

Oct 29, 2018

Не удается установить Bigartm

by Рядовиков А В

Sep 14, 2018

Курс достаточно насыщен. Понятно, что что трудно сделать его полнее без увеличения длительности. Из пожеланий, хотелось бы больше ссылок на описания алгоритмов. Возможно, есть статьи на русском языке. Да, просьба здесь и дальше: в конспектах указывать англоязычные термины и ссылки на базовые статьи. Спасибо))!

by Ivan S

Sep 07, 2018

Замечательный курс! Очень помог в изучении и освоении алгоритмов обучения без учителя. Теперь чувствую себя более уверенно в работе с данными и их обработкой. Может, смогу сделать что-нибудь прикладное в данной области.

by Гаврилова Д Е

Aug 07, 2018

Замечательный курс, очень понравились приглашенные лекторы.

by Андрей

Aug 05, 2018

Большое спасибо авторам и преподавателям!