Chevron Left
Поиск структуры в данных に戻る

モスクワ物理工科大学(Moscow Institute of Physics and Technology) による Поиск структуры в данных の受講者のレビューおよびフィードバック

4.7
1,247件の評価
129件のレビュー

コースについて

В машинном обучении встречаются задачи, где нужно изучить структуру данных, найти в них скрытые взаимосвязи и закономерности. Например, нам может понадобиться описать каждого клиента банка с помощью меньшего количества переменных — для этого можно использовать методы понижения размерности, основанные на матричных разложениях. Такие методы пытаются сформировать новые признаки на основе старых, сохранив как можно больше информации в данных. Другим примером может служить задача тематического моделирования, в которой для набора текстов нужно построить модель, объясняющую процесс формирования этих текстов из небольшого количества тем. Такие задачи назвают обучением без учителя. В отличие от обучения с учителем, в них не предполагают восстановление зависимости между объектами и целевой переменной. Из этого курса вы узнаете об алгоритмах кластеризации данных, с помощью которых, например, можно искать группы схожих клиентов мобильного оператора. Вы научитесь строить матричные разложения и решать задачу тематического моделирования, понижать размерность данных, искать аномалии и визуализировать многомерные данные. Видео курса разработаны на Python 2. Задания и ноутбуки к ним адаптированы к Python 3....

人気のレビュー

PK

May 04, 2018

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

AA

Jan 09, 2017

Интересный курс, замечательные преподаватели. Есть моменты когда лекция довольно сложная, а тест простой, это оставляет тревожное ощущение недоученности :)

フィルター:

Поиск структуры в данных: 76 - 100 / 124 レビュー

by Ульянова М Г

Nov 02, 2019

Немного не хватает практических заданий на Python по кластеризации. В целом, как и предыдущие курсы, замечательный!

by Григорий У

Sep 12, 2019

Последнее задание не соответствует нынешней версии Bigartm. А так всё отлично.

by Егор

Dec 01, 2019

Стоит немного доработать последние два задания под современный условия. В остальном, всё отлично. Спасибо за курс!

by Alexander G

Oct 26, 2019

The course is interesting and worth to be completed, but it does seem a little bit outdated to me.

by Аверин А В

Dec 05, 2019

Добрый вечер! Курс очень понравился!

by Nadezhda K

Dec 09, 2019

Все как всегда было очень интересно и увлекательно! Не без мелких косяков конечно с заданиями, но вдвойне мотивировало учиться с ребятами искренне интересующимися специализацией. Без сомнения пройду оставшиеся курсы специализации и жду новых интересных заданий

by Исаев Д В

Mar 11, 2019

Не понравилась неделя тематического моделирования.

by Sergey

Mar 19, 2019

Good course. Outstanding choice of topics. The most prominent techniques for clustering are covered in an easy-to-read way. I especially enjoyed the last week's theory on processing texts. It's awesome that the authors have included the references for further reading; I've downloaded those, and now I'm looking forward to read it soon.

As usual for this set of courses, I have mixed feelings with regard to the programming assignments. From those, I mostly mastered installing various versions of Python packages. On the other hand, it can be viewed as a nice hands-on training in using the built-in functions for clustering purposes, and running some general Python routines, such as list comprehension etc. This way, it totally fits my personal goals, and I'm moving on to the next course.

by Лавренов Д В

Dec 09, 2018

Доволен первыми тремя неделями и категорически недоволен последней, 4й. Как минимум из-за отвратительного задания по программированию.

Тем не менее, большое спасибо за курс!

by Evghenii G

Nov 28, 2017

Очень доступное объяснение материала, кроме последней недели - её, как будто, взяли из другого курса. Было бы хорошо добавить побольше практических задач

by Филипп

Aug 09, 2017

что за трэш с грэйдером? :(

by Konstantin C

Apr 02, 2018

Тематическое моделирование довольно сложно для понимания и требует много дополнительного времени на изучение. Возможно, стоит пересмотреть этот раздел: упростить изложение либо растянуть на две и более недели обучения.

by Andrey I

Jun 19, 2016

Отличный курс, но мало времени уделено кластеризации, хорошо бы иметь 2 недели вместо одной и больше заданий

by Minasian V

Jul 21, 2017

В целом- очень круто. Некоторые темы сложные , но интересные. На мой взгляд, последняя неделя проработана не очень хорошо.

by Polovinkin A

Oct 09, 2017

не очень приятно подбирать версии gensim и numpy, чтобы выполнить задание

by Michael N

Jun 25, 2017

Очень полезный курс. Хотя по сравнению с 1, 2 и 4 показался местами пустоватым.

Практические тесты мало помогают усвоить материал, т.к. зачастую их можно решить просто бездумно дургая соответствующие API

Однако теоретическая часть выше всяких похвал.

by Чернышев А О

Nov 13, 2017

Про тематические модели Константин Воронцов очень бегло рассказывает и непонятно, к сожалению.

by Anvar A

Mar 26, 2018

первые недели курса были очень полезными. Последния неделя слишком сложная, чтобы ее дать в столь короткий срок. Никакой пользы не извлек из последней недели

by Alexander A

Mar 25, 2017

Установка BigARTM меняется. Видео сделано по предыдущей версии. Вместо видео лучше бы была PDF с подробными инструкциями. В ролике приведён пример идеальной ситуации. Хотелось бы, чтобы в ролике разбирались типичные ошибки установки.

by Лазарев А В

Apr 27, 2018

Задачи в Тематическом моделировании нуждаются в более глубоких пояснениях.

В целом курс понравился.

by Nikolay K

Apr 12, 2018

Сделайте что-нибудь с заданием по Тематическому Моделированию, чтобы оно не зависело от версий библиотек

by Sergei B

Aug 04, 2016

Этому курсу поставлю "четверочку". Предыдущие два более интересные и продуманные. Третий курс получился каким-то слишком поверхностным. Сам материал очень нужный и полезный, но уж слишком "по верхам". Хочется, чтобы некоторые темы разбирали более глубоко и последовательно - от простого к сложному. Не всегда можно обойтись коротеньким видео - лучше записать больше уроков, и толку будет больше.

Но все равно я доволен. Пройдя три курса, я уже могу решать реальные задачи.

by Иван Ч

Sep 27, 2016

Неделя с тематическим моделированием не зашла.

by Сотников Г Д

Jun 11, 2017

Курс, на мой взгляд, уступает предыдущим двум. В целом мне понравилось, однако некоторые шероховатости в его составлении испортили впечатление. Советую пройти и ознакомиться! Подталкивает к интересным размышлениям.

by Макеева Д В

Jun 15, 2018

было бы здорово, если бы создатели курса перезаливали информацию по мере изменений состава пакетов. так, например, BigARTM уже совершенно не соответствует тому, что говорится в курсе: ни установка, ни пример работы с данным пакетом.