Chevron Left
Поиск структуры в данных に戻る

モスクワ物理工科大学(Moscow Institute of Physics and Technology) による Поиск структуры в данных の受講者のレビューおよびフィードバック

4.7
1,148件の評価
116件のレビュー

コースについて

В машинном обучении встречаются задачи, где нужно изучить структуру данных, найти в них скрытые взаимосвязи и закономерности. Например, нам может понадобиться описать каждого клиента банка с помощью меньшего количества переменных — для этого можно использовать методы понижения размерности, основанные на матричных разложениях. Такие методы пытаются сформировать новые признаки на основе старых, сохранив как можно больше информации в данных. Другим примером может служить задача тематического моделирования, в которой для набора текстов нужно построить модель, объясняющую процесс формирования этих текстов из небольшого количества тем. Такие задачи назвают обучением без учителя. В отличие от обучения с учителем, в них не предполагают восстановление зависимости между объектами и целевой переменной. Из этого курса вы узнаете об алгоритмах кластеризации данных, с помощью которых, например, можно искать группы схожих клиентов мобильного оператора. Вы научитесь строить матричные разложения и решать задачу тематического моделирования, понижать размерность данных, искать аномалии и визуализировать многомерные данные. Задания и видео курса разработаны на Python 2....

人気のレビュー

PK

May 04, 2018

Отличный вводный курс, как и вся специализация. Доступно и понятно изложены все базовые вещи, которые могут потребоваться в повседневной деятельности в качестве data scientist.

AA

Jan 09, 2017

Интересный курс, замечательные преподаватели. Есть моменты когда лекция довольно сложная, а тест простой, это оставляет тревожное ощущение недоученности :)

フィルター:

Поиск структуры в данных: 101 - 111 / 111 レビュー

by YaMolekula

Dec 08, 2018

Задания слишком простые

by Ilya P

Aug 22, 2017

Устал

by Dmitry K

Sep 23, 2017

Полноценно понравилась только первая неделя с интересным практическим заданием.

На остальных неделях был просто ужасный перегруз теоретической информацией, поэтому лекции прослушивались фактически только "для галочки" и их познавательная ценность стремилась к нулю. Осознать материал из лекций человеку с базовыми знаниями линейной алгебры просто нереально.

Последняя неделя это вообще торжество теории над практикой: при всем моем уважении к Константину Воронцову лекции читались как будто для людей, которые уже потратили пару месяцев на плотную работу с тематическим моделированием. Обилие специфичной терминологии, отсутствие каких-либо полноценных ассоциаций с практическим применением описываемой теории полностью перечеркивают полезность курса.

Практические задания по большей части выполнялись по принципу "китайской комнаты": я что-то пишу по инструкциям, но понимание напрочь отсутствует.

by Провилков И С

Sep 10, 2017

Плохая документация по установки BigARTM и неоднозначности постановки задач в некоторых номерах.

by Ivan M

Nov 30, 2017

Четвёртая неделя — это фиаско. Танцы с бубном и подбором версий пакетов.

by Petrukhin I

Apr 23, 2018

Большая часть курса посвящена тематическому моделированию. Плохо рассмотрены проблемы кластеризации и поиска аномалий. Качество заданий по программированию, особенно в том же тематическом моделировании невысокие. Слишком много математимитики в видео, при этом крайне скудные лекции

by andrhua

Aug 16, 2019

нет списка литературы, и еще самое интересное задание - опциальное

by Сокольцов В Ю

Jun 20, 2017

Я отдаю деньги, а потом мне еще и ребусы в заданиях разгадывать. Если вы уж делаете этот курс для людей, которые успешно работаю в сфере анализа данных - так вы хотя бы пишите об этом. Не все ваши студенты закончили МФТИ!

Еще и не все задачи работают

by Кочетков К

Oct 15, 2017

Курс хороший, но задания полный пип.... Потратил кучу времени на расчеты...нельзя, чтобы результаты так зависели от используемых библиотек...или надо настаивать сразу перед выполнением заданий на их установке...или расширить границы грейда!!!

by P A b

Aug 01, 2017

Последняя неделя всё испортила. Реальная оценка не 1 звезда, но минусую чтобы исправили финальное задание!

by Волынский А Н

Jun 28, 2017

Если есть пример неудачного курса, то это он. Теория и практика слабо соотносятся друг с другом. Конспекты очень слабые, очень мало практических примеров.