Chevron Left
Введение в машинное обучение に戻る

ロシア国立研究大学経済高等学院(National Research University Higher School of Economics) による Введение в машинное обучение の受講者のレビューおよびフィードバック

4.6
2,100件の評価
396件のレビュー

コースについて

Не так давно получил распространение термин «большие данные», обозначивший новую прикладную область — поиск способов автоматического быстрого анализа огромных объёмов разнородной информации. Наука о больших данных ещё только оформляется, но уже сейчас она очень востребована — и в будущем будет востребована только больше. С её помощью можно решать невероятные задачи: оценивать состояние печени по кардиограмме, предсказывать зарплату по описанию вакансии, предлагать пользователю музыку на основании его анкеты в интернете. Большими данными может оказаться что угодно: результаты научных экспериментов, логи банковских транзакций, метеорологические наблюдения, профили в социальных сетях — словом, всё, что может быть полезно проанализировать. Самым перспективным подходом к анализу больших данных считается применение машинного обучения — набора методов, благодаря которым компьютер может находить в массивах изначально неизвестные взаимосвязи и закономерности. На факультете компьютерных наук ВШЭ и в Школе анализа данных есть люди, активно использующие машинное обучение и разрабатывающие новые подходы к нему. Именно они — преподаватели этого курса. Вы изучите основные типы задач, решаемых с помощью машинного обучения — в основном речь пойдёт о классификации, регрессии и кластеризации. Узнаете об основных методах машинного обучения и их особенностях, научитесь оценивать качество моделей — и решать, подходит ли модель для решения конкретной задачи. Наконец, познакомитесь с современными библиотеками, в которых реализованы обсуждаемые модели и методы оценки их качества. Для работы мы будем использовать реальные данные из реальных задач. Краткая программа курса: Неделя 1. Введение. Примеры задач. Логические методы: решающие деревья и решающие леса. Неделя 2. Метрические методы классификации. Линейные методы, стохастический градиент. Неделя 3. Метод опорных векторов (SVM). Логистическая регрессия. Метрики качества классификации. Неделя 4. Линейная регрессия. Понижение размерности, метод главных компонент. Неделя 5. Композиции алгоритмов, градиентный бустинг. Нейронные сети. Неделя 6. Кластеризация и визуализация. Частичное обучение. Неделя 7. Прикладные задачи анализа данных: постановки и методы решения. Слушателю нужно знать об основных понятиях математики: функциях, производных, векторах, матрицах. Для выполнения практических заданий потребуются базовые навыки программирования. Очень желательно знать Python. Задания рассчитаны на использование этого языка и его библиотек numpy, pandas и scikit-learn. Чтобы успешно завершить курс, нужно набрать проходную сумму баллов за тесты и практические задания, а также выполнить финальный проект, посвящённый решению прикладной задачи анализа данных. Мы уверены, что этот курс будет полезен каждому, кто хочет постичь искусство предсказательного моделирования и освоить интеллектуальный анализ данных. Появились технические трудности? Обращайтесь на адрес: coursera@hse.ru...

人気のレビュー

AL

Sep 25, 2018

Понравилось отсутствие "разжевывания" материала, короткие и информативные видео-лекции, довольно интересные задания. Курс дал начальное понимание основных принципов и направлений в ML.

KS

Jun 10, 2018

Добротный курс, который дает набор минимальных знаний по теме. Сделано качественно, однако, есть что поправить в плане структурной целостности и логичности построения курса.

フィルター:

Введение в машинное обучение: 226 - 250 / 380 レビュー

by Isakov A S

Dec 05, 2019

Интересно. Достаточно сжато и не муторно. Очень интересно смотреть дополнительные материалы. Спасибо за курс!

by Михаил Ю Г

Oct 14, 2019

Формулирование тестовых заданий происходит в очень расплывчатой манере. Мне кажется можно их усложнить, но формулировать все же по чётче.

by Valentin

Mar 12, 2016

Очень хороший вводный курс в машинное обучение.

by Anton

Mar 12, 2016

Интересный и ознакомительный курс.

by Vasilii P

Feb 05, 2016

Отлично

by Фатуллаева А В к

Oct 05, 2019

Спасибо за такое замечательное приложение!!!

by Кесиян Г А

Oct 25, 2019

Отличный курс введения в машинное обучение.

Теоретический материал представлен в такой мере, чтобы можно было начать двигаться в нужном направлении, но при этом требовалось самому решать подзадачи. На мой взгляд, это идеальный способ заставить учиться.

Вопросы «внутри видео» позволяют верифицировать приобретенные знания.

Вопросы в тестовых заданиях не всегда имеют прямой ответ в видеоматериалах. Периодически требуется додумывать, приходить к ответу с помощью логико-математических методов.

Практические задания требуют не только механических навыков реализации известных алгоритмов или вызова известных методов, но и всякого рода рассуждения, для получения верных решений. Наличие системы обсуждения в этом смысле является отличным способом поделиться опытом или понять решение, когда вы уже в тупике.

Итоговый проект позволяет погрузиться в проблемную область и побывать в роли учителя, что тоже, безусловно, интересно и важно.

by Рудаменко Р А

Oct 23, 2019

Познавательно, легко и ёмко, даже для тех, кто сталкивается с машинным обучением и программированием на Python впервые!

by Viktoria V

Oct 09, 2019

Проходила курс ради практики. Она тут шикарно разобрана)

by Евтушенко И И

Nov 01, 2019

Курс порадовал. Хоть он и для начинающих, для глубокого понимания происходящего необходимо иметь неплохую базу по математике, а если её нет, то набрать и приступать к этому курсу. Также порадовали некоторые практические задания, многие из них действительно интересно делать

by Aidos A

Mar 11, 2016

Отличный курс!

Считаю, что в лекции про решающие деревья необходимо более детально разобрать аолгоритмы с пропусками.

by Oleg O

Aug 20, 2016

Сначала курс казался немного непонятным, но хорошие лекторы и повторение материала в конце расставили всё по своим местам. Спасибо!

by Palladin

Mar 30, 2018

+

by Nikolay

Feb 18, 2017

Очень приятно впечатление от курса. Правда для его полного понимания нужна хорошая математическая база. Отлично подходит для ознакомления как с машинным обучением, так и с базовым изучением языка python. Задания курса не сложные за счет того, что авторы подробно объясняют все шаги для получения результата. Ставлю отлично, но хочется, чтобы авторы рассказали еще больше алгоритмов из реальной жизни, особенно в части распознавания образов.

by Andrey F

Dec 26, 2016

Хороший обзорный курс. Его преимущество в том, что он позволяет за относительно короткий срок составить представление об основных методах машинного обучения, применяемых на практике. Причем в лекциях дается хоть и лаконичное, но вполне серьезное теоретическое объяснение работы алгоритмов, глубина познаний лектора вызывает большое уважение. Недостатки этого курса - продолжение достоинств. Объем лекций на мой взгляд маловат и не всегда позволяет глубоко понять теорию, стоящую за изучаемыми методами (я знаю, что первое слово в названии курса - "введение", но тем не менее). Некоторые вещи стоило бы "разжевывать" подробнее. Практические задания же часто слишком простые и глубокого понимания теории и не требуют - для их выполнения достаточно научиться пользоваться готовыми библиотеками.

Кроме того, небрежно оценено время прохождения - на все практические задания якобы надо по 3 часа (хотя многие из них достаточно простые и у меня уходило намного меньше времени), а вот финальное задание, самое сложное и объемное, оценено в 2 часа. Ну и прочие технические недоработки реализации, типа необходимости вручную убирать перевод строки в файле с ответом (хоть это и недостаток самой платформы, не все курсы здесь от него страдают) - все это несколько портит впечатление.

Но поставил все-таки пять звездочек, потому что несмотря на все эти недочеты я благодарен авторам курса за их труд и за те знания, которые я здесь получил, и очень рад, что русскоязычные курсы по этому направлению вообще существуют и конкретно этот явно стоит того, чтобы его пройти.

by Орлов А В

Apr 29, 2019

Отличный курс для введения в Машинное обучение.

by Ерден Ж

Sep 19, 2017

Спасибо, очень интересно и познавательно. Большое спасибо лекторам и сокурсникам!

by Лазарев А В

Oct 26, 2017

Спасибо, курс дает навыки python (pandas, sklearn), но если не знакомы с python вообще, то лучше пройдите курс сначала в SoloLearn он займет неделю, но сильно поможет.

Методы машинного обучения стали понятны и хочется учиться дальше.

by Zmeyoff A

Dec 18, 2017

Отличный курс! Хорошо подойдет для тех, кто только начинает изучение этой области. Все предельно понятно, ничего лишнего. Возможно кто-то скажет о чрезмерной лаконичности излагаемого материала, но я считаю, что для понимания работы алгоритмов и примерных областей их применения это именно то, что нужно.

by Aleksei S

Feb 07, 2016

Хороший курс, но требует мат. подготовки. Приятно видеть, что преподаватели работают над его усовершенствованием.

by Stepan T

Oct 20, 2018

Курс познакомил меня с основами машинного обучения. Видеолекции, правда, сильно ужаты. Иногда приходится по несколько раз пересматривать. Из-за этого желательно ознакомится параллельно с другими курсами (например с этим https://yandexdataschool.ru/edu-process/courses/machine-learning#item-1). Несмотря на то, что Питон я начал изучать здесь, то оценки времени выполнения достаточно адекватные (больше заданного времени у меня ушло на выполнение первого задания и итогового).

by Нетай И В

Aug 05, 2019

Отличный курс, дающий хорошее введение, подробно описан, снабжён достаточным количеством примеров и заданий, подробно описывающих по шагам применения разных алгоритмов, алгоритмы математически обоснованы и мотивированы. Задания подробно описаны, всегда чётко понятно, что требуется сделать в задании и как это сделать. Отдельное спасибо за отличные лекции!

by Елохин А А

Feb 22, 2019

Отличный курс, действительно почувствовал, что узнал что-то новое, появилась некоторая система в голове касательно методов машинного обучения. Спасибо авторам!

by Denis Z

Sep 19, 2017

Very good!

by Alexander F

Sep 09, 2019

Great coverage of basic knowledge for ML algorithms.