Chevron Left
Введение в машинное обучение に戻る

ロシア国立研究大学経済高等学院(National Research University Higher School of Economics) による Введение в машинное обучение の受講者のレビューおよびフィードバック

4.6
2,093件の評価
395件のレビュー

コースについて

Не так давно получил распространение термин «большие данные», обозначивший новую прикладную область — поиск способов автоматического быстрого анализа огромных объёмов разнородной информации. Наука о больших данных ещё только оформляется, но уже сейчас она очень востребована — и в будущем будет востребована только больше. С её помощью можно решать невероятные задачи: оценивать состояние печени по кардиограмме, предсказывать зарплату по описанию вакансии, предлагать пользователю музыку на основании его анкеты в интернете. Большими данными может оказаться что угодно: результаты научных экспериментов, логи банковских транзакций, метеорологические наблюдения, профили в социальных сетях — словом, всё, что может быть полезно проанализировать. Самым перспективным подходом к анализу больших данных считается применение машинного обучения — набора методов, благодаря которым компьютер может находить в массивах изначально неизвестные взаимосвязи и закономерности. На факультете компьютерных наук ВШЭ и в Школе анализа данных есть люди, активно использующие машинное обучение и разрабатывающие новые подходы к нему. Именно они — преподаватели этого курса. Вы изучите основные типы задач, решаемых с помощью машинного обучения — в основном речь пойдёт о классификации, регрессии и кластеризации. Узнаете об основных методах машинного обучения и их особенностях, научитесь оценивать качество моделей — и решать, подходит ли модель для решения конкретной задачи. Наконец, познакомитесь с современными библиотеками, в которых реализованы обсуждаемые модели и методы оценки их качества. Для работы мы будем использовать реальные данные из реальных задач. Краткая программа курса: Неделя 1. Введение. Примеры задач. Логические методы: решающие деревья и решающие леса. Неделя 2. Метрические методы классификации. Линейные методы, стохастический градиент. Неделя 3. Метод опорных векторов (SVM). Логистическая регрессия. Метрики качества классификации. Неделя 4. Линейная регрессия. Понижение размерности, метод главных компонент. Неделя 5. Композиции алгоритмов, градиентный бустинг. Нейронные сети. Неделя 6. Кластеризация и визуализация. Частичное обучение. Неделя 7. Прикладные задачи анализа данных: постановки и методы решения. Слушателю нужно знать об основных понятиях математики: функциях, производных, векторах, матрицах. Для выполнения практических заданий потребуются базовые навыки программирования. Очень желательно знать Python. Задания рассчитаны на использование этого языка и его библиотек numpy, pandas и scikit-learn. Чтобы успешно завершить курс, нужно набрать проходную сумму баллов за тесты и практические задания, а также выполнить финальный проект, посвящённый решению прикладной задачи анализа данных. Мы уверены, что этот курс будет полезен каждому, кто хочет постичь искусство предсказательного моделирования и освоить интеллектуальный анализ данных. Появились технические трудности? Обращайтесь на адрес: coursera@hse.ru...

人気のレビュー

AL

Sep 25, 2018

Понравилось отсутствие "разжевывания" материала, короткие и информативные видео-лекции, довольно интересные задания. Курс дал начальное понимание основных принципов и направлений в ML.

KS

Jun 10, 2018

Добротный курс, который дает набор минимальных знаний по теме. Сделано качественно, однако, есть что поправить в плане структурной целостности и логичности построения курса.

フィルター:

Введение в машинное обучение: 251 - 275 / 379 レビュー

by Иванов И Е

Aug 22, 2019

Отличный обзорный курс по машинному обучению на русском языке. Курс требует достаточно серьезных знаний высшей математики (на уровне основных технических вузов страны) для полного понимания лекций и предполагает, что все проблемы, связанные с программированием, использованием библиотек, документации и т.д. обучающийся преодолеет самостоятельно. Акцент в курсе сделан на фундаментальные знания и на обзор методов машинного обучения, их достоинств и недостатков.

by Захаров А Е

Sep 18, 2019

Полезный курс, дающий базовые представления об алгоритмах машинного обучения. Однако крайне желательно иметь базовый опыт работы с Питоном - неплохо было бы это добавить в описание курса. Я увидел Питон впервые, поэтому много времени ушло на его "изучение" вместо решения задач )))

by Золотых М А

Sep 19, 2019

Отличный преподаватель. Все очень понятно, полезно и доходчиво. Юмор и примеры в лекции расставляют все по местам.

by Михаил Ю Г

Oct 14, 2019

Формулирование тестовых заданий происходит в очень расплывчатой манере. Мне кажется можно их усложнить, но формулировать все же по чётче.

by Прошян Г

Sep 04, 2019

Отличный курс, но не лучший выбор курса, чтобы сделать первый шаг в ML. Курс предполагает наличие знаний по матану, материал не разжеван, нужно много гуглить

by Гончаров В В

Sep 05, 2019

Потрясающий курс!!! Многому меня научил. СПАСИБО создателям!!!👍

by Кустов С Н

Sep 05, 2019

Замечательный курс!!!

by Alexander F

Sep 09, 2019

Great coverage of basic knowledge for ML algorithms.

by Фатуллаева А В к

Oct 05, 2019

Спасибо за такое замечательное приложение!!!

by Viktoria V

Oct 09, 2019

Проходила курс ради практики. Она тут шикарно разобрана)

by Ольга К

Nov 25, 2019

Спасибо преподавателям, коротко, без воды, очень полезные тесты и практические занятия. Но главное - мотивирует на дальнейшее обучение в данном направлении.

by Рудаменко Р А

Oct 23, 2019

Познавательно, легко и ёмко, даже для тех, кто сталкивается с машинным обучением и программированием на Python впервые!

by Кузнецов А А

Nov 29, 2019

Хороший курс. Рекомендую.

by Кесиян Г А

Oct 25, 2019

Отличный курс введения в машинное обучение.

Теоретический материал представлен в такой мере, чтобы можно было начать двигаться в нужном направлении, но при этом требовалось самому решать подзадачи. На мой взгляд, это идеальный способ заставить учиться.

Вопросы «внутри видео» позволяют верифицировать приобретенные знания.

Вопросы в тестовых заданиях не всегда имеют прямой ответ в видеоматериалах. Периодически требуется додумывать, приходить к ответу с помощью логико-математических методов.

Практические задания требуют не только механических навыков реализации известных алгоритмов или вызова известных методов, но и всякого рода рассуждения, для получения верных решений. Наличие системы обсуждения в этом смысле является отличным способом поделиться опытом или понять решение, когда вы уже в тупике.

Итоговый проект позволяет погрузиться в проблемную область и побывать в роли учителя, что тоже, безусловно, интересно и важно.

by Евтушенко И И

Nov 01, 2019

Курс порадовал. Хоть он и для начинающих, для глубокого понимания происходящего необходимо иметь неплохую базу по математике, а если её нет, то набрать и приступать к этому курсу. Также порадовали некоторые практические задания, многие из них действительно интересно делать

by Artem A

Dec 04, 2019

Интересный обзорный курс, простой и весьма поверхностный. Рекомендую к прохождению как новичкам в ML, а также просто желающим расширить свой кругозор и познакомиться с популярными методами машинного обучения.

by Isakov A S

Dec 05, 2019

Интересно. Достаточно сжато и не муторно. Очень интересно смотреть дополнительные материалы. Спасибо за курс!

by Артем Р

Mar 30, 2019

В целом неплохое введение в машинное обучение и использование питона для этих задач. Мне понравилось. Ролики с теорией в таком виде практически не воспринимаются, я уже забыл практически все, что в них было.

by oleg t

Mar 13, 2016

Несмотря на довольно тяжелое введение, курс очень понравился.

С одной стороны, если бы я не проходил курс от Ng, врядли бы смог зафиналить. Очень математическое введение, другие обозначения целевой переменной и алгоритмов.

С другой стороны к третьему-четвертому уроку втягиваешься и начинаешь проводить правильные ассоциации. Формальный подход дает возможность по новому взглянуть на уже известные алгоритмы.

Отдельно спасибо за качественно продуманные практические задания. Если в первых уроках кажется, что они не очень между собой связаны, то в финальном задании практически каждый блок на своем месте. Если у Ng задания были практически дословным воплощением мат. формулы в матлабовский код, то здесь реальные данные показывают свое истинное лицо. Надо включать мозг и смотреть документацию к numpy, pandas и тп.

Финальное задание отдельно порадовало. Дает реальное "ощущение" работы с моделями.

Спасибо!

by Vladimir M

Dec 18, 2016

Теория немного оторвана от практики

by Anton R

Jan 30, 2016

Порог входа очень большой.

by Yury K

Feb 17, 2016

Отдельно теория и практика хороши. Но они не особо связаны.

В теоретической части я добавил бы еще больше наглядных примеров. В практической - более жизненные данные. Во многих примерах данные были синтетические.

И самое главное - не хватает "лабораторных работ", в которых инструктора показывали бы, как чем пользоваться.

by Kofman P

Mar 08, 2016

Хороший курс, но мало связи теории и практики.

by Alexander K

Apr 16, 2018

Сам курс очень понравился, но немного смазывают картину задания - в курсе рассказывается про математическую основу, а в заданиях идет применение конкретного пакета на Python причем по большому счету в режиме черного ящика. Хотя в описании стоит "Очень желательно знать Python", по факту знать его строго необходимо для прохождения курса (вариант - учить в параллель, но тогда будьте готовы что у вас это будет занимать больше заявленных 3-5 часов в неделю)

by Igor K

Feb 13, 2018

Практическая часть в этом курсе отличная, а вот с теорией, на мой взгляд, получилось не очень. Может быть, я такой тупой, но мне показалось, что всё рассказывалось кратко и при этом очень обобщённо. И поэтому сложность была запредельная. ИМХО, для "введения" такой подход не самый лучший. Предпочёл бы смотреть "полные" варианты этих видео из курса ШАД, чтобы как-то разобраться в вопросе.