Chevron Left
Введение в машинное обучение に戻る

ロシア国立研究大学経済高等学院(National Research University Higher School of Economics) による Введение в машинное обучение の受講者のレビューおよびフィードバック

4.6
stars
2,120件の評価
400件のレビュー

コースについて

Не так давно получил распространение термин «большие данные», обозначивший новую прикладную область — поиск способов автоматического быстрого анализа огромных объёмов разнородной информации. Наука о больших данных ещё только оформляется, но уже сейчас она очень востребована — и в будущем будет востребована только больше. С её помощью можно решать невероятные задачи: оценивать состояние печени по кардиограмме, предсказывать зарплату по описанию вакансии, предлагать пользователю музыку на основании его анкеты в интернете. Большими данными может оказаться что угодно: результаты научных экспериментов, логи банковских транзакций, метеорологические наблюдения, профили в социальных сетях — словом, всё, что может быть полезно проанализировать. Самым перспективным подходом к анализу больших данных считается применение машинного обучения — набора методов, благодаря которым компьютер может находить в массивах изначально неизвестные взаимосвязи и закономерности. На факультете компьютерных наук ВШЭ и в Школе анализа данных есть люди, активно использующие машинное обучение и разрабатывающие новые подходы к нему. Именно они — преподаватели этого курса. Вы изучите основные типы задач, решаемых с помощью машинного обучения — в основном речь пойдёт о классификации, регрессии и кластеризации. Узнаете об основных методах машинного обучения и их особенностях, научитесь оценивать качество моделей — и решать, подходит ли модель для решения конкретной задачи. Наконец, познакомитесь с современными библиотеками, в которых реализованы обсуждаемые модели и методы оценки их качества. Для работы мы будем использовать реальные данные из реальных задач. Краткая программа курса: Неделя 1. Введение. Примеры задач. Логические методы: решающие деревья и решающие леса. Неделя 2. Метрические методы классификации. Линейные методы, стохастический градиент. Неделя 3. Метод опорных векторов (SVM). Логистическая регрессия. Метрики качества классификации. Неделя 4. Линейная регрессия. Понижение размерности, метод главных компонент. Неделя 5. Композиции алгоритмов, градиентный бустинг. Нейронные сети. Неделя 6. Кластеризация и визуализация. Частичное обучение. Неделя 7. Прикладные задачи анализа данных: постановки и методы решения. Слушателю нужно знать об основных понятиях математики: функциях, производных, векторах, матрицах. Для выполнения практических заданий потребуются базовые навыки программирования. Очень желательно знать Python. Задания рассчитаны на использование этого языка и его библиотек numpy, pandas и scikit-learn. Чтобы успешно завершить курс, нужно набрать проходную сумму баллов за тесты и практические задания, а также выполнить финальный проект, посвящённый решению прикладной задачи анализа данных. Мы уверены, что этот курс будет полезен каждому, кто хочет постичь искусство предсказательного моделирования и освоить интеллектуальный анализ данных. Появились технические трудности? Обращайтесь на адрес: coursera@hse.ru...

人気のレビュー

AA

Jun 15, 2016

Хороший курс без лишнего. Некоторые методы, предлагаемые в заданиях не оптимальны с точки зрения затрат ресурсов компьютера и времени программиста, но, надеюсь, с новыми сессиями будет развитие курса.

AL

Sep 25, 2018

Понравилось отсутствие "разжевывания" материала, короткие и информативные видео-лекции, довольно интересные задания. Курс дал начальное понимание основных принципов и направлений в ML.

フィルター:

Введение в машинное обучение: 251 - 275 / 384 レビュー

by Konstantin C

Jan 14, 2018

отличный курс

by Ашурбеков З И

Jun 15, 2016

Щииикарно всё

by Sergey M

Mar 15, 2016

Очень полезно

by Антон Г

Jan 27, 2016

Хороший курс.

by Kolya M

Jan 12, 2019

Very usefull

by Летунов Ю

Feb 12, 2017

Good course

by Dmitry U

Feb 17, 2016

Нормально )

by Denis Z

Sep 19, 2017

Very good!

by Sergei C

Apr 11, 2018

The best!

by Nikita D

Dec 22, 2017

Excellent

by Aleksei Z

Nov 28, 2016

Real good

by Вьюн С А

Jul 21, 2018

Отлично!

by Kirill L

Jun 25, 2017

awesome

by Vasilii P

Feb 05, 2016

Отлично

by Lyubich V

Aug 24, 2017

10/10

by Igor I

Jan 29, 2017

great

by tigraboris

May 11, 2016

Super

by Misha P

Apr 07, 2016

best

by Сафиуллин А

Feb 26, 2016

Норм

by Zaur B

Jan 07, 2017

Отл

by Palladin

Mar 30, 2018

+

by Evgeniy Z

Jun 09, 2016

В общем и целом курс мне понравился.

В нём много математики, что не удивительно, т.к курс основан на материале, который ориентирован на студентов физико-математических вузов. По сравнению с курсами типа "Программирование для домохозяек", которых полно здесь на курсере - это несомненный плюс. С другой стороны иногда приходилось тратить значительное время на то, чтобы вспомнить некоторые вещи из математики, в частности той же линейной алгебры (которой здесь, кстати, очень много). Немного в этом помогли дополнительные материалы, предоставляемые авторами курса - за что им большое спасибо.

Практические задания были не очень сложными, т.к. инструкции для выполнения очень подробные. Основная проблема с их выполнением была в том, что часто неправильно работала система оценки практических заданий, но это было в основном по началу курса.

Не скажу что для их выполнения требуются существенные познания в программировании - достаточно базового понимания Python и умения искать в интернете документацию по нужным библиотекам. Довольно большая часть возникающих вопросов разрешалась прямым запросом в гугле первой же ссылкой на Stackoverflow.

Некоторые задания были достаточно интересными с точки зрения получаемого результата - например кластеризация цветов на изображении.

Понравился также финальный проект. Само задание оставляет простор для творчества + при желании можно участвовать в конкурсе на kaggle, где можно проверить свои знания на практике.

4 из 5 ставлю за излишне формализованный теоретический материал. Всё же не все потенциальные слушатели курса с легкостью разберутся что такое L2-регуляризация или SVD-разложение.

by Вячеслав А Д

Dec 19, 2017

Офигенный курс, познавательно, захватывающе - несколько закрученных сюжетных линий, интересная развязка. Сложно сразу определить жанр - много математики, но есть история, биология и немало мистики.Здесь можно много узнать о пассажирах Титаника (например, что самое популярное женское имя на корабле - Анна) и размерах цветка ириса. Курс захватывает с первых серий и держит в напряжении до конца. Некоторые серии настолько хороши, что я пересматривал их по несколько раз.

Отличный подбор актеров - в главной роли доктор физико-математических наук К.В. Воронцов. Игра актеров завораживает - они так легко оперируют всякими мистическими символами и непонятными словами - это надо видеть! Воронцов иногда так входит в роль, что даже игнорирует подсказки суфлера (логическая/логистическая регрессия). Я так проникся, что даже решил немного отпустить волосы, чтоб быть похожим, очки-то у меня уже есть)).

Задания курса очень увлекательные, вызывают бурю эмоций и иногда восторг, когда циферки сходятся! Я делал их на свежую голову по утрам, глубокой ночью и даже в пятницу вечером (иногда это просто необходимо - “без пол литра, никак”), но я так и не понял, когда их лучше делать - к каждой задачке нужен свой подход!

В общем, не могу не порекомендовать этот курс!

by oleg t

Mar 13, 2016

Несмотря на довольно тяжелое введение, курс очень понравился.

С одной стороны, если бы я не проходил курс от Ng, врядли бы смог зафиналить. Очень математическое введение, другие обозначения целевой переменной и алгоритмов.

С другой стороны к третьему-четвертому уроку втягиваешься и начинаешь проводить правильные ассоциации. Формальный подход дает возможность по новому взглянуть на уже известные алгоритмы.

Отдельно спасибо за качественно продуманные практические задания. Если в первых уроках кажется, что они не очень между собой связаны, то в финальном задании практически каждый блок на своем месте. Если у Ng задания были практически дословным воплощением мат. формулы в матлабовский код, то здесь реальные данные показывают свое истинное лицо. Надо включать мозг и смотреть документацию к numpy, pandas и тп.

Финальное задание отдельно порадовало. Дает реальное "ощущение" работы с моделями.

Спасибо!

by Пильгуй В Л

Sep 26, 2017

Ну что ж, начнем ))) Я бы сказал отличный курс. Я не математик и почти мало программирую, потому как больше выполняют роль менеджера (СТО). На курс пошел для того чтобы хоть немного раззбираться в теме и попробовать применять ее в наших проектах. Вся теория утомляет, и честно сказать, я думал что не пройду курс по причине слабого мат аппарата, но благодаря практике смог постепенно разобраться. Здесь чувствуется советская школа, очень много сложной теории, которая ну никак не является введением )) Очень порадовал финальное задание, получилось расставить все по полочкам, так сказать окончательно для себя выбрать самое основное и понять как применять эти знания на практике в своей работе. Больше бы практики в этом курсе и была бы оценка 5. В любом случае огромное спасибо создателям курса! Хотелось бы продолжение.