Chevron Left
Введение в машинное обучение に戻る

ロシア国立研究大学経済高等学院(National Research University Higher School of Economics) による Введение в машинное обучение の受講者のレビューおよびフィードバック

4.6
2,100件の評価
396件のレビュー

コースについて

Не так давно получил распространение термин «большие данные», обозначивший новую прикладную область — поиск способов автоматического быстрого анализа огромных объёмов разнородной информации. Наука о больших данных ещё только оформляется, но уже сейчас она очень востребована — и в будущем будет востребована только больше. С её помощью можно решать невероятные задачи: оценивать состояние печени по кардиограмме, предсказывать зарплату по описанию вакансии, предлагать пользователю музыку на основании его анкеты в интернете. Большими данными может оказаться что угодно: результаты научных экспериментов, логи банковских транзакций, метеорологические наблюдения, профили в социальных сетях — словом, всё, что может быть полезно проанализировать. Самым перспективным подходом к анализу больших данных считается применение машинного обучения — набора методов, благодаря которым компьютер может находить в массивах изначально неизвестные взаимосвязи и закономерности. На факультете компьютерных наук ВШЭ и в Школе анализа данных есть люди, активно использующие машинное обучение и разрабатывающие новые подходы к нему. Именно они — преподаватели этого курса. Вы изучите основные типы задач, решаемых с помощью машинного обучения — в основном речь пойдёт о классификации, регрессии и кластеризации. Узнаете об основных методах машинного обучения и их особенностях, научитесь оценивать качество моделей — и решать, подходит ли модель для решения конкретной задачи. Наконец, познакомитесь с современными библиотеками, в которых реализованы обсуждаемые модели и методы оценки их качества. Для работы мы будем использовать реальные данные из реальных задач. Краткая программа курса: Неделя 1. Введение. Примеры задач. Логические методы: решающие деревья и решающие леса. Неделя 2. Метрические методы классификации. Линейные методы, стохастический градиент. Неделя 3. Метод опорных векторов (SVM). Логистическая регрессия. Метрики качества классификации. Неделя 4. Линейная регрессия. Понижение размерности, метод главных компонент. Неделя 5. Композиции алгоритмов, градиентный бустинг. Нейронные сети. Неделя 6. Кластеризация и визуализация. Частичное обучение. Неделя 7. Прикладные задачи анализа данных: постановки и методы решения. Слушателю нужно знать об основных понятиях математики: функциях, производных, векторах, матрицах. Для выполнения практических заданий потребуются базовые навыки программирования. Очень желательно знать Python. Задания рассчитаны на использование этого языка и его библиотек numpy, pandas и scikit-learn. Чтобы успешно завершить курс, нужно набрать проходную сумму баллов за тесты и практические задания, а также выполнить финальный проект, посвящённый решению прикладной задачи анализа данных. Мы уверены, что этот курс будет полезен каждому, кто хочет постичь искусство предсказательного моделирования и освоить интеллектуальный анализ данных. Появились технические трудности? Обращайтесь на адрес: coursera@hse.ru...

人気のレビュー

AL

Sep 25, 2018

Понравилось отсутствие "разжевывания" материала, короткие и информативные видео-лекции, довольно интересные задания. Курс дал начальное понимание основных принципов и направлений в ML.

KS

Jun 10, 2018

Добротный курс, который дает набор минимальных знаний по теме. Сделано качественно, однако, есть что поправить в плане структурной целостности и логичности построения курса.

フィルター:

Введение в машинное обучение: 26 - 50 / 380 レビュー

by Хабиров Т Р

Dec 13, 2018

Отличный вводный курс для начинающих с нуля. После прохождения появляется представление о том, как решаются задачи машинного обучения.

by Шаланкин М Д

Apr 08, 2019

Отличный курс для введения в основные понятия.

by Oleg D

Jul 23, 2016

Замечательный курс!

by Igor I

Jan 29, 2017

great

by Maksim

Feb 07, 2016

Отличный курс. Задания впечатляют - все хорошо продумано и дает возможность разобраться как в теории, так и с пакетом (с коим дела раньше не имел).

by Kirill L

Jun 25, 2017

awesome

by Darya L

Dec 14, 2017

Немного не хватает математики: объяснения всех упомянутых в курсе формул. Тем не менее, курс дает отличное базовое представление о машинном обучении, а большое количество практических заданий помогают чувствовать себя уверенней.

by Dmitrii M

Mar 15, 2016

Отличный обзор возможностей машинног обучения с небольшой практикой дающей хороший задел для дальнейшего обучения

by Igor S

Apr 05, 2018

Для меня главный недостаток курса - сложность и лаконичность видео лекций. В большинстве случаев я не улавливал всю суть из видео материалов. То что для лектора казалось самоочевидным, для меня таковым не было. Возможно дело в формате и длине, возможно дело в базовой сложности материала. Поэтому я начал использовать замечательные конспекты лекций на гитхабе, и вот они вместе с видео-лекциями дают очень хорошую основу. Для выполнения заданий не нужно понимать все досконально, на первых порах это немного расстраивало, ведь видео задают весьма высокую планку сложности, и ты ожидаешь супер сложных заданий. Сами задания оказались очень интересными. Резюмируя, спасибо вам за этот замечательный курс, он не идеален, но очень хорош. Авторы проделали большую работу.

by Fabio M S

Feb 22, 2016

Очень хороший курс! Трудные и сложные задания, так как и есть настоящие задачи в области анализа данных. Но учители всё ясно объясняют, только надо хорошо мозгами работать для того, чтобы успевать все уроки пройти.

by Abramov A

Nov 20, 2016

Большое спасибо за курс.

Это отличное начало для погружения в область машинного обучения.

by Matvey S

Jan 28, 2016

Нравится, вызывает интерес. Удачно совмещается простота подачи материала со строгостью математических определений.

Лекции 1 недели посмотрел за один присест. Надеюсь, не растеряю своего настроя.

В любом случае, видно, что авторы очень ответственно подошли к созданию курса. За это спасибо и 5*!

by rinat

Dec 11, 2016

Очень интересный курс. Нет углубления в теорию (ненужного). Акцент на практику

by Lyubich V

Aug 24, 2017

10/10

by Mikhail U

Mar 12, 2016

Очень хороший курс для практики, если у вас уже есть некоторые знания в машинном обучении.

by Alexey S

Jul 31, 2017

Интересно, жизненно и увлекательно!

by Левченко Е С

Mar 14, 2016

Очень хороший курс! Для меня показался сложным, но практические задания крайне полезные.

После прохождения имеется возможность действительно использовать знания "на деле".

Спасибо!

by smoly87

May 17, 2018

Курс охватывает изучение не только методов машинного обучения(SVM, логистическая регрессия, градиентный бустинг и т.д.), но и практические советы по обработке данных, борьбы с искажениями и ошибками в исходных данных. Кроме того важным преимуществом является разбор математической основы приведенных алгоритмов, а не использование этих инструментов, как чёрного ящика.

by Ivan C

Aug 02, 2017

Получил массу удовольсвия и полезной информации. Спасибо.

Очень доступно структурированній курс.

by Костин К А

Apr 11, 2018

Отличный курс! Раскрывает множество базовых вещей и особенностей этой тематики, которые просто необходимо знать при решении любой реальной задачи машинного обучения. Преподавание курса на высшем уровне: просто, понятно и интересно раскрываются зачастую непросты вещи. Советую курс как новичкам, так и людям с опытом! Мне кажется, каждый сможет что-то для себя открыть новое и, самое главное, получить удовольствие от процесса!

by Александр З

Aug 10, 2017

Курс получился достаточно насыщенным в плане обзора различных методов, но требует хорошего понимания математики, чтобы усвоить теоретическую часть.

by Виталий Х

Mar 11, 2016

Спасибо.Курс достаточно хорош для первого знакомства с машинным обучением.Очень понравился курс и разнообразие прикладных задач.

by TzQWYtmxhY

Feb 23, 2016

Lets courses team to gain more money.

by Vladimir

Apr 12, 2016

Отличный курс, узнал много нового.

by Egor C

Nov 20, 2017

Хороший вводный курс по методам машинного обучения. Для понимания лекций необходим определенный математический багаж знаний на уровне высшей математики университета.