Chevron Left
Введение в машинное обучение に戻る

ロシア国立研究大学経済高等学院(National Research University Higher School of Economics) による Введение в машинное обучение の受講者のレビューおよびフィードバック

4.6
2,093件の評価
395件のレビュー

コースについて

Не так давно получил распространение термин «большие данные», обозначивший новую прикладную область — поиск способов автоматического быстрого анализа огромных объёмов разнородной информации. Наука о больших данных ещё только оформляется, но уже сейчас она очень востребована — и в будущем будет востребована только больше. С её помощью можно решать невероятные задачи: оценивать состояние печени по кардиограмме, предсказывать зарплату по описанию вакансии, предлагать пользователю музыку на основании его анкеты в интернете. Большими данными может оказаться что угодно: результаты научных экспериментов, логи банковских транзакций, метеорологические наблюдения, профили в социальных сетях — словом, всё, что может быть полезно проанализировать. Самым перспективным подходом к анализу больших данных считается применение машинного обучения — набора методов, благодаря которым компьютер может находить в массивах изначально неизвестные взаимосвязи и закономерности. На факультете компьютерных наук ВШЭ и в Школе анализа данных есть люди, активно использующие машинное обучение и разрабатывающие новые подходы к нему. Именно они — преподаватели этого курса. Вы изучите основные типы задач, решаемых с помощью машинного обучения — в основном речь пойдёт о классификации, регрессии и кластеризации. Узнаете об основных методах машинного обучения и их особенностях, научитесь оценивать качество моделей — и решать, подходит ли модель для решения конкретной задачи. Наконец, познакомитесь с современными библиотеками, в которых реализованы обсуждаемые модели и методы оценки их качества. Для работы мы будем использовать реальные данные из реальных задач. Краткая программа курса: Неделя 1. Введение. Примеры задач. Логические методы: решающие деревья и решающие леса. Неделя 2. Метрические методы классификации. Линейные методы, стохастический градиент. Неделя 3. Метод опорных векторов (SVM). Логистическая регрессия. Метрики качества классификации. Неделя 4. Линейная регрессия. Понижение размерности, метод главных компонент. Неделя 5. Композиции алгоритмов, градиентный бустинг. Нейронные сети. Неделя 6. Кластеризация и визуализация. Частичное обучение. Неделя 7. Прикладные задачи анализа данных: постановки и методы решения. Слушателю нужно знать об основных понятиях математики: функциях, производных, векторах, матрицах. Для выполнения практических заданий потребуются базовые навыки программирования. Очень желательно знать Python. Задания рассчитаны на использование этого языка и его библиотек numpy, pandas и scikit-learn. Чтобы успешно завершить курс, нужно набрать проходную сумму баллов за тесты и практические задания, а также выполнить финальный проект, посвящённый решению прикладной задачи анализа данных. Мы уверены, что этот курс будет полезен каждому, кто хочет постичь искусство предсказательного моделирования и освоить интеллектуальный анализ данных. Появились технические трудности? Обращайтесь на адрес: coursera@hse.ru...

人気のレビュー

AL

Sep 25, 2018

Понравилось отсутствие "разжевывания" материала, короткие и информативные видео-лекции, довольно интересные задания. Курс дал начальное понимание основных принципов и направлений в ML.

KS

Jun 10, 2018

Добротный курс, который дает набор минимальных знаний по теме. Сделано качественно, однако, есть что поправить в плане структурной целостности и логичности построения курса.

フィルター:

Введение в машинное обучение: 76 - 100 / 379 レビュー

by Dmitry U

Feb 17, 2016

Нормально )

by Albina S

Jan 29, 2018

Хорошие курс по введению в машинное обучение

by Крючков А Ю

Aug 10, 2016

Название соответствует курсу. Если хотите получить базовые знания по методам машинного обучения, то этот курс можно выбирать смело. Для решения задач достаточно базовых знаний из программирования и высшей математики.

В этом курсе используется язык python. Если раньше им не пользовались, то это не так страшно. Всё можно освоить в процессе прохождения курса. Большая часть ответов на вопросы есть в документации к библиотекам и форумах.

by Alexander O

Oct 19, 2017

Отличный курс! Он познакомил меня с Kaggle!

by Eugene M

Jul 07, 2017

Отличный курс, дает хорошее понимание что такое ML

by Nikolai M

Mar 05, 2018

Классный курс!

by Филипьев А В

Feb 08, 2018

Курс сильно изменился с последнего моего прохождения. Стал более понятным и появились дополнительные материалы. Плюсом сыграло, что Python стал гораздо более удобным, нет больших проблем с использованием 3-ей версии.

by Vladimir Y

Nov 16, 2017

Это очень хороший курс, для меня он оказался лучшим в качестве старта в этой дисциплине.

by Kuznetsov A S

Jun 10, 2018

Добротный курс, который дает набор минимальных знаний по теме. Сделано качественно, однако, есть что поправить в плане структурной целостности и логичности построения курса.

by Летунов Ю

Feb 12, 2017

Good course

by Dmitry S

Jun 28, 2017

Интересные материалы, отличные преподаватели, хорошее начало для новичков.

by Anton

Jun 14, 2016

Здорово cкомпонованы знания по интеллектуальному анализу данных с хорошими практическими заданиями

by Konstantin C

Jan 14, 2018

отличный курс

by Aleksei S

Feb 07, 2016

Хороший курс, но требует мат. подготовки. Приятно видеть, что преподаватели работают над его усовершенствованием.

by Anatoliy S

Nov 19, 2017

Не все формулировки в заданиях понятны, но жить можно

by Бодак С А

Jun 08, 2017

Не плохое начало

by Anton P

Sep 14, 2017

Excellent course with lot of practice. 5/5

by Iryna L

Jan 21, 2017

Спасибо большое за то, что вы делаете. Прекрасный курс с интересными задачами, по которым не тольео можно научиться, но и узнать несто новое по смежным областям.

by Дмитрий

Feb 23, 2016

Отличный курс, систематизирующий обрывочные знания, полученные на других курсах.

by Николай

Apr 24, 2017

Прекрасно. Сложно. Поначалу тяжело, потом как-то втягиваешься. Для полного понимания всего материала надо быть сильно продвинутым в математике. Задания иногда действительно не совсем соответствуют теории, это слабое место курса.

by Alexey

Jun 15, 2016

Хороший курс без лишнего. Некоторые методы, предлагаемые в заданиях не оптимальны с точки зрения затрат ресурсов компьютера и времени программиста, но, надеюсь, с новыми сессиями будет развитие курса.

by denisbalyko

Feb 10, 2016

Спасибо за курс. Хороший материал. Отличные задания.

Есть желание пройти курс "Практическое машинное обучение" с большим количеством примеров и практик от авторов этого курса.

by Pavel F

Mar 14, 2016

Отличный курс, но для не математиков теория воспринимается сложновато, зато есть возможность прикоснуться к "Машинному обучению" при выполнение практических заданий. Даже если теория большой частью пройдет мимо, в голове отложится общее представление о данном предмете.

by Andrey S

Apr 09, 2018

Курс понравился. Очень хороший баланс между теорией и практикой, никакой воды в рассуждениях, всё по делу. И практические задания интересные. Рекомендую

by Павел М

Nov 19, 2017

Практическая часть просто великолепная. Теория, честно говоря, скучновата