Chevron Left
Введение в машинное обучение に戻る

ロシア国立研究大学経済高等学院(National Research University Higher School of Economics) による Введение в машинное обучение の受講者のレビューおよびフィードバック

4.6
2,093件の評価
395件のレビュー

コースについて

Не так давно получил распространение термин «большие данные», обозначивший новую прикладную область — поиск способов автоматического быстрого анализа огромных объёмов разнородной информации. Наука о больших данных ещё только оформляется, но уже сейчас она очень востребована — и в будущем будет востребована только больше. С её помощью можно решать невероятные задачи: оценивать состояние печени по кардиограмме, предсказывать зарплату по описанию вакансии, предлагать пользователю музыку на основании его анкеты в интернете. Большими данными может оказаться что угодно: результаты научных экспериментов, логи банковских транзакций, метеорологические наблюдения, профили в социальных сетях — словом, всё, что может быть полезно проанализировать. Самым перспективным подходом к анализу больших данных считается применение машинного обучения — набора методов, благодаря которым компьютер может находить в массивах изначально неизвестные взаимосвязи и закономерности. На факультете компьютерных наук ВШЭ и в Школе анализа данных есть люди, активно использующие машинное обучение и разрабатывающие новые подходы к нему. Именно они — преподаватели этого курса. Вы изучите основные типы задач, решаемых с помощью машинного обучения — в основном речь пойдёт о классификации, регрессии и кластеризации. Узнаете об основных методах машинного обучения и их особенностях, научитесь оценивать качество моделей — и решать, подходит ли модель для решения конкретной задачи. Наконец, познакомитесь с современными библиотеками, в которых реализованы обсуждаемые модели и методы оценки их качества. Для работы мы будем использовать реальные данные из реальных задач. Краткая программа курса: Неделя 1. Введение. Примеры задач. Логические методы: решающие деревья и решающие леса. Неделя 2. Метрические методы классификации. Линейные методы, стохастический градиент. Неделя 3. Метод опорных векторов (SVM). Логистическая регрессия. Метрики качества классификации. Неделя 4. Линейная регрессия. Понижение размерности, метод главных компонент. Неделя 5. Композиции алгоритмов, градиентный бустинг. Нейронные сети. Неделя 6. Кластеризация и визуализация. Частичное обучение. Неделя 7. Прикладные задачи анализа данных: постановки и методы решения. Слушателю нужно знать об основных понятиях математики: функциях, производных, векторах, матрицах. Для выполнения практических заданий потребуются базовые навыки программирования. Очень желательно знать Python. Задания рассчитаны на использование этого языка и его библиотек numpy, pandas и scikit-learn. Чтобы успешно завершить курс, нужно набрать проходную сумму баллов за тесты и практические задания, а также выполнить финальный проект, посвящённый решению прикладной задачи анализа данных. Мы уверены, что этот курс будет полезен каждому, кто хочет постичь искусство предсказательного моделирования и освоить интеллектуальный анализ данных. Появились технические трудности? Обращайтесь на адрес: coursera@hse.ru...

人気のレビュー

AL

Sep 25, 2018

Понравилось отсутствие "разжевывания" материала, короткие и информативные видео-лекции, довольно интересные задания. Курс дал начальное понимание основных принципов и направлений в ML.

KS

Jun 10, 2018

Добротный курс, который дает набор минимальных знаний по теме. Сделано качественно, однако, есть что поправить в плане структурной целостности и логичности построения курса.

フィルター:

Введение в машинное обучение: 151 - 175 / 379 レビュー

by Semjon M

Mar 16, 2016

Мне очень понравился курс, огромное спасибо преподавателям, Яндексу и всем, кто участвовал в подготовке курса! Отдельная благодарность за математику - очень приятно размять мозг спустя 10 лет после университета.

by Трусевич Е

Feb 20, 2016

Easy but very useful course.

by Дмитрий И

Mar 09, 2016

Мне очень понравился данный курс, спасибо создателям. Помогло в работе!

by Баранов М А

Apr 13, 2016

Отличный курс, полезно, интересно, понятно. Спасибо.

by Багринцев А В

Mar 04, 2016

Интересная подача материала, понятные пояснения, логичная последовательность нарастания сложности курса. Как новичок, не чувствую ни недоумений, ни больших замешательств. Спасибо!

by Aidos A

Mar 11, 2016

Отличный курс!

Считаю, что в лекции про решающие деревья необходимо более детально разобрать аолгоритмы с пропусками.

by Elena L

Jan 18, 2018

Великолепный курс!

by Евгений

Mar 29, 2016

Отличный курс!

Введение в Python не было бы лишним.

by Alexey K

Feb 21, 2018

Спасибо за увлекательное приключение. Вся информация по полочкам. После окончания курса наметились несколько областей, где можно начинать пробовать приментять на практике.

by Zmeyoff A

Dec 18, 2017

Отличный курс! Хорошо подойдет для тех, кто только начинает изучение этой области. Все предельно понятно, ничего лишнего. Возможно кто-то скажет о чрезмерной лаконичности излагаемого материала, но я считаю, что для понимания работы алгоритмов и примерных областей их применения это именно то, что нужно.

by Aleksei Z

Nov 28, 2016

Real good

by Гридасов И И

Jul 26, 2017

Отличный курс, иногда сложно из-за слишком формальной постановки задач, но практические задания разбавляют избыточную формальность и на выходе мы имеет, математический фундамент в теории и разработанные руки на практике)

by Valentin

Mar 06, 2016

В теории иногда слишком быстро делают выводы, так что приходится ставить на паузу и думать, переходить от слайда к слайду. Это, возможно, связано с попыткой уложить обширный курс в двухмесячный срок. Но в целом сама база отличная, знакомят с большим количеством базовых и не базовых методов, с оптимизацями и эвристиками, даже рассказывают немного про нейронные сети.

А вот к практике у меня претензий нет. Кто-то ее ругает из-за того, что она заточена под Python, - но ведь нельзя изучать машинное обучение без машины! И выучить язык в таких объемах несложная задача.

by Sergey M

Mar 15, 2016

Очень полезно

by Fedor R

Feb 25, 2016

Short and good, a way to learn practical python ML skills and math background to understand and feel different ML technics

by Vlad L

Oct 27, 2016

Everything is great! Sometimes lectures were apart from seminars and labs

by Yury L

Feb 04, 2016

Good alternative for Andrew Ng course in Russian. Good level, but some difficulties with tasks submission.

by Ашурбеков З И

Jun 15, 2016

Щииикарно всё

by Ihor I

Jan 29, 2017

Great course! Thanks a lot!

by Кузнецов Н А

Jun 22, 2016

Очень понятный курс, не перебарщивающий с упрощением материала. Домашки делаются на питоне, как в жизни. Я бы добавил во вспомогательные материалы больше тонкостей по настройке методов в питоне и общий обзор методов в картинках для интуитивного понимания

by Misha P

Apr 07, 2016

best

by Denis Z

Dec 05, 2017

В конце курса понял, что хочу стать настоящим мужчиной, как Воронцов Константин Вячеславович. Для меня курс стал входной дверью, т.к. курс от яникса дикий.

by Sergei C

Apr 11, 2018

The best!

by TzQWYtmxhY

Feb 23, 2016

Lets courses team to gain more money.

by Огнерубов Е В

Jun 15, 2016

Класс. Но очень сжато