Activity Recognition using Python, Tensorflow and Keras

提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

Learn about data augmentation.

Learn about transfer learning using training the pre-trained model InceptionNet V3 on the data.

Clock1.5 hours
Beginner初級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

Note: The rhyme platform currently does not support webcams, so this is not a live project. This guided project is about human activity recognition using Python,TensorFlow2 and Keras. Human activity recognition comes under the computer vision domain. In this project you will learn how to customize the InceptionNet model using Tensorflow2 and Keras. While you are watching me code, you will get a cloud desktop with all the required software pre-installed. This will allow you to code along with me. After all, we learn best with active, hands-on learning. Special Feature: 1.Manually label images. 2. Learn how to use data augmentation normalization. 3. Learn about transfer learning using training the pre-trained model InceptionNet V3 on the data. Note: This project works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

Deep LearningPython ProgrammingTensorflowcognitive data sciencekeras

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Learn how to normalize data to improve accuracy of the final results.

  2. Learn how to fine tune the model to improve it's accuracy.

  3. Learn how to apply transfer learning using InceptionNet V3.

  4. Learn how to augment data to prevent overfitting of the model.

  5. Learn how to label data manually as 0 or 1.

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。