Big-O Time Complexity in Python Code

4.6
11件の評価
提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

Use matplotlib Pyplot to produce a graph to visualize Big-O performance data.

Write and analyze the performance of a Bubble sort function.

Create a Binary Search function and perform Big-O analysis.

Clock1 hour
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In the field of data science, the volumes of data can be enormous, hence the term Big Data. It is essential that algorithms operating on these data sets operate as efficiently as possible. One measure used is called Big-O time complexity. It is often expressed not in terms of clock time, but rather in terms of the size of the data it is operating on. For example, in terms of an array of size N, an algorithm may take N^2 operations to complete. Knowing how to calculate Big-O gives the developer another tool to make software as good as it can be and provides a means to communicate performance when reviewing code with others. In this course, you will analyze several algorithms to determine Big-O performance. You will learn how to visualize the performance using the graphing module pyplot. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

Data SciencepyplotPython ProgrammingBig-Oalgorithm analysis

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Use matplotlib’s Pyplot module to produce a graph to visualize Big-O performance data.

  2. Write a function that returns one element and analyze the Big-O time complexity.

  3. Write a Bubble sort function and analyze its performance.

  4. Implement a Linear Search of an Array and determine its Big-O.

  5. Create a Binary Search function and perform Big-O analysis.

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。