Cervical Cancer Risk Prediction Using Machine Learning

提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

U​nderstand the theory and intuition behind XGBoost Algorithm

P​reform exploratory data analysis

Develop, train and evaluate XG-Boost classifier model using Scikit-Learn

Clock2 hours
Beginner初級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this hands-on project, we will build and train an XG-Boost classifier to predict whether a person has a risk of having cervical cancer. Cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. Data has been obtained from 858 patients and include features such as number of pregnancies, smoking habits, Sexually Transmitted Disease (STD), demographics, and historic medical records.

あなたが開発するスキル

  • Data Analysis
  • Machine Learning
  • classification
  • Artificial Intelligence(AI)

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Task #1: Understand the Problem Statement and Business Case

  2. Task #2: Import Libraries and Datasets

  3. Task #3: Perform Exploratory Data Analysis

  4. Task #4: Perform Data Visualization

  5. Task #5: Prepare the data before Model Training

  6. Task #6: Understand the Theory and Intuition Behind XG-Boost

  7. Task #7: Train and Evaluate XG-Boost Algorithm

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。