Cleaning and Exploring Big Data using PySpark

4.3
13件の評価
提供:
Coursera Project Network
1,657人がすでに登録済みです
このガイド付きプロジェクトでは、次のことを行います。

Learn how to clean your big dataset in PySpark

Learn how to explore big dataset in PySpark

Learn how to create visualizations from big dataset loaded in PySpark

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

By the end of this project, you will learn how to clean, explore and visualize big data using PySpark. You will be using an open source dataset containing information on all the water wells in Tanzania. I will teach you various ways to clean and explore your big data in PySpark such as changing column’s data type, renaming categories with low frequency in character columns and imputing missing values in numerical columns. I will also teach you ways to visualize your data by intelligently converting Spark dataframe to Pandas dataframe. Cleaning and exploring big data in PySpark is quite different from Python due to the distributed nature of Spark dataframes. This guided project will dive deep into various ways to clean and explore your data loaded in PySpark. Data preprocessing in big data analysis is a crucial step and one should learn about it before building any big data machine learning model. Note: You should have a Gmail account which you will use to sign into Google Colab. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

CleaningPython ProgrammingData Visualization (DataViz)Apache SparkExploratory Data Analysis

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Install Spark on Google Colab and load datasets in PySpark

  2. Change column datatype, remove whitespaces and drop duplicates

  3. Remove columns with Null values higher than a threshold

  4. Group, aggregate and create pivot tables

  5. Rename categories and impute missing numeric values

  6. Create visualizations to gather insights

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。