Detecting COVID-19 with Chest X-Ray using PyTorch

4.6
172件の評価
提供:
Coursera Project Network
5,523人がすでに登録済みです
このガイド付きプロジェクトでは、次のことを行います。

Create custom Dataset and DataLoader in PyTorch

Train a ResNet-18 model in PyTorch to perform Image Classification

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 2-hour long guided project, we will use a ResNet-18 model and train it on a COVID-19 Radiography dataset. This dataset has nearly 3000 Chest X-Ray scans which are categorized in three classes - Normal, Viral Pneumonia and COVID-19. Our objective in this project is to create an image classification model that can predict Chest X-Ray scans that belong to one of the three classes with a reasonably high accuracy. Please note that this dataset, and the model that we train in the project, can not be used to diagnose COVID-19 or Viral Pneumonia. We are only using this data for educational purpose. Before you attempt this project, you should be familiar with programming in Python. You should also have a theoretical understanding of Convolutional Neural Networks, and optimization techniques such as gradient descent. This is a hands on, practical project that focuses primarily on implementation, and not on the theory behind Convolutional Neural Networks. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

Deep LearningMachine LearningStatistical ClassificationMedical Imagingpytorch

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Introduction

  2. Importing Libraries

  3. Creating Custom Dataset

  4. Image Transformations

  5. Prepare DataLoader

  6. Data Visualization

  7. Creating the Model

  8. Training the Model

  9. Final Results

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

DETECTING COVID-19 WITH CHEST X-RAY USING PYTORCH からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。