Deep Learning with PyTorch : Build an AutoEncoder

提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

Create Custom Dataset

Create AutoEncoder Network

Train AutoEncoder Network

Clock1 hour
Beginner初級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In these one hour project-based course, you will learn to implement autoencoder using PyTorch. An autoencoder is a type of neural network that learns to copy its input to its output. In autoencoder, encoder encodes the image into compressed representation, and the decoder decodes the representation to reconstruct the image. We will use autoencoder for denoising hand written digits using a deep learning framework like pytorch. This guided project is for learners who want to use pytorch for building deep learning models.Learners who want to apply autoencoder practically using PyTorch. In order to be successful in this project, you should be familiar with python , basic pytorch like creating or defining neural network and convolutional neural network.

あなたが開発するスキル

  • Deep Learning
  • Convolutional Neural Network
  • Autoencoder
  • Python Programming
  • pytorch

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Explore MNIST Handwritten digit dataset

  2. Data Preparation

  3. Load Dataset into batches

  4. Create AutoEncoder Model

  5. Train AutoEncoder Model

  6. Plot Results

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。