Employee Attrition Prediction Using Machine Learning

提供:
このガイド付きプロジェクトでは、次のことを行います。

Understand the theory and intuition behind logistic regression classifier models

Build, train and test a logistic regression classifier model in Scikit-Learn

Perform data cleaning, feature engineering and visualization

2 hours
初級
ダウンロード不要
分割画面ビデオ
英語
デスクトップのみ

In this project-based course, we will build, train and test a machine learning model to predict employee attrition using features such as employee job satisfaction, distance from work, compensation and performance. We will explore two machine learning algorithms, namely: (1) logistic regression classifier model and (2) Extreme Gradient Boosted Trees (XG-Boost). This project could be effectively applied in any Human Resources department to predict which employees are more likely to quit based on their features. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

  • Machine Learning Regression

  • Data Science

  • Artificial Neural Network

  • Machine Learning

  • regression

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Understand the Problem Statement and Business Case

  2. Import Libraries and Datasets

  3. Perform Data Visualization

  4. Perform Data Visualization - Continued

  5. Create Training and Testing Datasets

  6. Understand the Intuition Behind Logistic Regression

  7. Train and Evaluate a Logistic Regression Model

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

ガイド付きプロジェクトを購入することによって、ガイド付きプロジェクトを完了するために必要なものすべてが得られます。これには、開始する必要のあるファイルとソフトウェアを含むWebブラウザを介したクラウドデスクトップワークスペースへのアクセスの他、専門家によるステップバイステップのビデオ講座が含まれます。

ワークスペースにはラップトップまたはデスクトップコンピューターに適したサイズのクラウドデスクトップが含まれているため、モバイル機器ではガイド付きプロジェクトを使用できません。

ガイド付きプロジェクトの講師は、プロジェクトのスキル、ツール、またはその分野での経験があり、知識を共有して世界中の何百万人もの受講生に影響を与えるたことに情熱を持つ専門家です。

ガイド付きプロジェクトから作成したファイルをダウンロードして保持できます。そのためには、クラウドデスクトップにアクセスしているときに「ファイルブラウザ」機能を使用できます。

ガイド付きプロジェクトは払い戻しの対象外です。すべての返金ポリシーを表示する

ガイド付きプロジェクトには学費援助が利用できません。

ガイド付きプロジェクトでは監査を使用できません。

ページの上部で、このガイド付きプロジェクトの経験レベルを押して、知識の前提条件を表示できます。ガイド付きプロジェクトのすべてのレベルで、インストラクターがステップバイステップでご案内します。

はい。ガイド付きプロジェクトを完了するために必要なものはすべて、ブラウザで利用可能なクラウドデスクトップで利用できます。

分割画面環境でタスクをブラウザで直接完了することで学習できます。画面の左側で、ワークスペースでタスクを完了します。画面の右側で、講師がプロジェクトをステップごとにガイドします。

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。