Exploratory Data Analysis With Python and Pandas

4.7
103件の評価
提供:
Coursera Project Network
3,447人がすでに登録済みです
このガイド付きプロジェクトでは、次のことを行います。

Apply practical Exploratory Data Analysis (EDA) techniques on any tabular dataset using Python packages such as Pandas and Numpy.

Produce data visualizations using Seaborn and Matplotlib

Clock2 hours
Beginner初級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 2-hour long project-based course, you will learn how to perform Exploratory Data Analysis (EDA) in Python. You will use external Python packages such as Pandas, Numpy, Matplotlib, Seaborn etc. to conduct univariate analysis, bivariate analysis, correlation analysis and identify and handle duplicate/missing data. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

Python ProgrammingData AnalysisPandasExploratory Data AnalysisEDA

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Initial Data Exploration: Read in data, take a glimpse at a few rows, calculate some summary statistics.

  2. Univariate Analysis: Analyze continuous and categorical variables, one variable at a time.

  3. Bivariate Analysis: Looking at the relationship between two variables at a time.

  4. Identify and Handling Duplicate and Missing Data: Find and remove duplicate rows, and replace missing values with their mean and mode.

  5. Correlation Analysis: Looking at the correlation of numerical variables in the dataset and interpreting the numbers.

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

EXPLORATORY DATA ANALYSIS WITH PYTHON AND PANDAS からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。