Forecasting US Presidential Elections with Mixed Models

4.3
10件の評価
提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

Learn how the US elects Presidents in the Electoral College

Understand the basics of mixed effects models

Build a forecasting model to simulate the election using mixed effects models

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this project-based course, you will learn how to forecast US Presidential Elections. We will use mixed effects models in the R programming language to build a forecasting model for the 2020 election. The project will review how the US selects Presidents in the Electoral College, stylized facts about voting trends, the basics of mixed effects models, and how to use them in forecasting.

あなたが開発するスキル

  • Forecasting
  • Election
  • Linear Regression
  • Statistical Models
  • Mixed Model

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Overview of Forecasting Elections (Lecture)

  2. Overview of How the US Elects Presidents (Lecture)

  3. Stylized Facts About Voting (Lecture)

  4. Types of Forecasting Models (Lecture)

  5. Building a Fundamentals Based Forecasting Model (Lecture)

  6. Setting Up the Dataset (Coding)

  7. Fitting the Model (Coding)

  8. Extracting Variances (Coding)

  9. Simulating Errors (Coding)

  10. Viewing the Winner (Coding)

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。